Genie Nano-CXP Series[™]

Camera User's Manual

CoaXPress™ Monochrome and Color Area Scan

sensors | cameras | frame grabbers | processors | software | vision solutions

February 14, 2020

Rev: 0002

P/N: G3-CX0M-USR00 www.teledynedalsa.com

Notice

© 2019-2020 Teledyne Digital Imaging Inc.

All information provided in this manual is believed to be accurate and reliable. No responsibility is assumed by Teledyne DALSA for its use. Teledyne DALSA reserves the right to make changes to this information without notice. Reproduction of this manual in whole or in part, by any means, is prohibited without prior permission having been obtained from Teledyne DALSA.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States and other countries. Windows, Windows 10 are trademarks of Microsoft Corporation.

All other trademarks or intellectual property mentioned herein belong to their respective owners.

Document Date: February 14, 2020 Document Number: G3-CX0M-USR00

FCC Statements

Caution: The user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

About Teledyne DALSA, a business unit of Teledyne Digital Imaging Inc.

Teledyne DALSA is an international high performance semiconductor and Electronics Company that designs, develops, manufactures, and markets digital imaging products and solutions, in addition to providing wafer foundry services.

Teledyne DALSA Digital Imaging offers the widest range of machine vision components in the world. From industry-leading image sensors through powerful and sophisticated cameras, frame grabbers, vision processors and software to easy-to-use vision appliances and custom vision modules.

Contents

NANO-CXP SERIES OVERVIEW DESCRIPTION	5
Genie Nano-CXP Overview	5 5 5 6
Camera Firmware	E
Model Part Numbers	6
Monochrome Cameras	6
Color Cameras	
Accessories	7
HARDWARE AND SOFTWARE ENVIRONMENTS	8
Mounting	8
Frame Grabbers and Cabling	6 7 8 8 8
Software Platforms	8
Development Software for Camera Control	8
NANO-CXP SPECIFICATIONS	9
COMMON SPECIFICATIONS	9
Sensor Cosmetic Specifications	10
Dynamic Range & Signal to Noise Ratio Test Conditions	11
EMI, Shock and Vibration Certifications Mean Time between Failure (MTBF)	11 12
Nano-CXP Specifications: M5100, C5100, M4090, C4090	13
Spectral Response	14
Defective Pixel Specification for Models 5100/4090	 15
Firmware Files for These Models	16
NANO-CXP INSTALLATION	17
QUICK START (USING A TELEDYNE DALSA FRAME GRABBER)	17
GENERAL INSTALLATION OVERVIEW	17
Camera Firmware Updates	17
THE CAMERA WORKS — NOW WHAT	18
NANO-CXP CONNECTORS AND STATUS LED OVERVIEW	18
Connectors	18
LED Indicators	19
Camera Status LED Indicator PREVENTING OPERATIONAL FAULTS DUE TO ESD	19 20
	20
OPERATIONAL REFERENCE	21
Using Cameras	21
CamExpert Panes	21
CamExpert View Parameters Option	22
CAMERA INFORMATION CATEGORY	23
Camera Information Feature Descriptions	23
Power-up Configuration Dialog Camera Power-up Configuration	27 27
Load / Save Configuration	27
Sensor Control Category	28
Sensor Control Feature Descriptions	28
Black Level/Gain Control Details (On-Semi Python sensors)	31
On-Semi Python Sensors Gain Stage Diagram	31
OnSemi Sensor Artifacts with Fast Readout Mode	31

Genie Nano-CXP Series™ Contents ◆ 1

Fast Readout Mode Artifacts Correction	32
Exposure Alignment: Overview	32
Synchronous Exposure Alignment	33
Reset Exposure Alignment	33
Sensor Exposure Timing: OnSemi Python Models	33
Trigger Characteristics: Start of Exposure	33
I/O CONTROL CATEGORY	34
I/O Control Feature Descriptions	35
I/O Module Block Diagram	37
Trigger Mode Details	37
Trigger Source Types (Trigger Mode=On)	37
Trigger Overlap: Feature Details	38
COUNTER AND TIMER CONTROL CATEGORY	41
Counter and Timer Control Feature Description	42
Counter and Timer Group Block Diagram	45
Example: Counter Start Source = OFF	45 46
Example: Counter Start Source = CounterEnd (itself) Example: CounterStartSource = EVENT or Signal (Edge Base)	46
Example: CounterStartSource = Line (Edge Base) Example	47
Example: Counting Elapse Time	48
ADVANCED PROCESSING CONTROL CATEGORY	49
Notes about Lens Shading Calibration	50
Advanced Processing Control Feature Descriptions	51
Advanced Processing Group	51
Flat Field Correction Group	52
Lens Shading Correction Group	53
Defective Pixel Replacement	55
Example User Defective Pixel Map XML File	55
Monochrome Defective Pixel Replacement Algorithm Description	
Color Defective Pixel Replacement Algorithm Description	57
IMAGE FORMAT CONTROL CATEGORY	58
Image Format Control Feature Description	59
Width and Height Features for Partial Scan Control	60
Vertical Cropping (Partial Scan)	61
Maximum Frame Rate Examples (Nano-CXP M/C 5100) Maximum Frame Rate Examples (Nano-CXP M/C 4090)	61 62
Horizontal Cropping (Partial Scan)	62
Internal Test Pattern Generator	63
ACQUISITION CONTROL CATEGORY	64
Acquisition Control Feature Descriptions	65
Acquisition Buffering	66
Features that cannot be changed during a Transfer	66
Transport Layer Control	67
CoaXpress Transport Layer Feature Description	68
FILE ACCESS CONTROL CATEGORY	70
File Access Control Feature Descriptions	70
Updating Firmware via File Access in CamExpert	73
Overview of the deviceUserBuffer Feature	73
IMPLEMENTING TRIGGER-TO-IMAGE RELIABILITY	74
Overview	74
T2IR with Genie Nano	74
NANO FEATURES FOR T2IR MONITORING	75

2 • Contents Genie Nano-CXP Series™

TECHNICAL SPECIFICATIONS	76
Notes on Genie Nano Identification and Mechanical	76
Temperature Management	76
MECHANICAL SPECIFICATIONS WITH M42 MOUNT:	77
SENSOR ALIGNMENT SPECIFICATION	78
CONNECTORS	79
10-pin I/O Connector Details	79
Camera DC Power Characteristics	80
I/O Mating Connector Specifications & Sources	80
EMC Declaration of Conformity	82
EU DECLARATION OF CONFORMITY	83
Declaration of REACH	84
ADDITIONAL REFERENCE INFORMATION	85
Choosing a Lens with the Correct Image Circle	85
	85
Lens Options for CXP Models with M42 Mounts	86
Additional Lens Parameters (application specific) Optical Considerations	86
Illumination	86
Light Sources	87
IR Cut-off Filters for Color Cameras	87 87
Nano Models with Built-in IR Cut-off Filters	<i>87</i>
Guidelines for Choosing IR Cut-off Filters	88
Back Focal Variance when using any Filter	89
Lens Modeling	90
Magnification and Resolution	90
SENSOR HANDLING INSTRUCTIONS	91
Electrostatic Discharge and the Sensor	91
Protecting Against Dust, Oil and Scratches	91
Cleaning the Sensor Window	92
RUGGEDIZED I/O CABLE ACCESSORIES	92
Cable Manufactures Contact Information	92
Cable Assembly G3-AIOC-BLUNT1M	93
Cable Assembly G3-AIOC-BLUNT2M	94
Cable Assembly G3-AIOC-BRKOUT2M	96
Nano Generic Power Supply with no I/O	98
Components Express Right-Angle Cable Assemblies	99
Cable Assembly: Right-Angle I/O Bunt End	99
Cable Assembly: Right-Angle I/O to Euro Block	100
TROUBLESHOOTING	101
Overview	101
Problem Type Summary	101
Before Contacting Technical Support	101
DEVICE AVAILABLE WITH OPERATIONAL ISSUES	101
Firmware Updates	101
Power Failure during a Firmware Update–Now What?	102
Cabling and Communication Issues	102
Camera is functional, frame rate is as expected, but image is black	102
REVISION HISTORY	103
CONTACT INFORMATION	104
Sales Information	104

Genie Nano-CXP Series™ Contents • 3

TECHNICAL SUPPORT 104

Nano-CXP Series Overview

Description

The Genie Nano-CXP (CoaXPress) series provides affordable easy to use digital cameras specifically engineered for industrial imaging applications by using the industries' latest leading sensors such as the On-Semi Python series of global shutter active pixel-type CMOS image sensors. Cameras are available in a number of models implementing different sensors, image resolutions and feature sets, either in monochrome or monochrome NIR.

Nano-CXP supports the Teledyne DALSA Trigger-to-Image-Reliability framework to dependably capture and transfer images from the camera to the host PC.

Genie Nano-CXP Overview

- CoaXPress 6Gbps interface
- Supports (PoCXP) Power over CoaXPress or an auxiliary power input
- Supports the CoaXPress device discovery methodology providing plug and play capability
- Implements GenICam and associated GenCP compatible with Teledyne DALSA or third party CoaXPress frame grabbers
- Optimized, rugged design with a wider operating temperature
- Available in multiple resolutions Monochrome and Color
- Visual camera multicolor status LED on back plate
- Uses 4 x 75 ohm coax cable connections (DIN 1.0/2.3 Coaxial)
- Flexible general purpose Counter and Timer functions available for internal and external controls
- Defective Pixel replacement & Flat Field correction available
- Lens Shading Correction Maps for lens vignetting
- Application development with the freely available Sapera™ LT software libraries
- Native Teledyne DALSA Trigger-to-Image Reliability design framework
- Refer to the Operation Reference and Technical Specifications section of the manual for full details
- CoaXPress is hosted by the Japan Industrial Imaging Association (JIIA)

Camera Firmware

Teledyne DALSA Genie Nano camera firmware contains open source software provided under different open source software licenses. More information about these open source licenses can be found in the documentation that accompanies the firmware, which is available on the Teledyne DALSA website at www.teledynedalsa.com.

Firmware updates for Genie Nano are available for download from the Teledyne DALSA web site www.teledynedalsa.com/imaging/support/downloads. Choose Genie Nano-CXP Firmware from the available download sections, then choose the zip file download specific to your camera model.

When using Sapera LT, update the camera firmware using CamExpert (see <u>Updating Firmware via File Access in CamExpert</u>). The Camera firmware can also be easily upgrade/downgrade within your own application via the API. The camera has a failsafe scheme which prevents unrecoverable camera errors even in the case of a power interruption.

Model Part Numbers

This manual covers the released Genie Nano-CXP monochrome and color models summarized in the table below. Nano-CXP common specifications and details follow this section.

Monochrome Cameras

Nano-CXP Model Full Resolution	Sensor Size/Model	Lens	Part Number
M4090 4096 x 4096	On-Semi 16M (Python 16K)	M42 mount	G3-XM30-M4095
M4090-NI R 4096 x 4096	On-Semi 16M (Python 16K)	M42 mount	G3-XM32-M4095
M5100 5120 x 5120	On-Semi 25M (Python 25K)	M42 mount	G3-XM30-M5105
M5100-NI R 5120 x 5120	On-Semi 25M (Python 25K)	M42 mount	G3-XM32-M5105

Color Cameras

Nano-CXP Model Full Resolution	Sensor Size/Model	Lens	Part Number
C4090 4096 x 4096	On-Semi 16M (Python 16K)	M42 mount	G3-XC30-C4095
C5100 5120 x 5120	On-Semi 25M (Python 25K)	M42 mount	G3-XC30-C5105

Accessories

Nano Accessories & Cables (sold separately)	Order Number
Mounting Bracket Plate (2 or 3 screwcamera mount), with ¼ inch external device screwmount (also known as a tripod mount)	G3-AMNT-BRA01
I/O Blunt End Cable (1 meter Screw Retention to Flying Leads) (2 meter Screw Retention to Flying Leads)	G3-AIOC-BLUNT1M G3-AIOC-BLUNT2M
I/O Breakout Cable (2 meter Screw Retention to Euroblock connector)	G3-AIOC-BRKOUT2M
Generic 12 volt power supply for Genie Nano-Aux connector (Samtec 10-Pin) – 4 Meter length	<u>G3-APWS-S10S04M</u>
Nano-CL — M42 to F-mount (Nikon) adapter (same adapter as used with Genie TS) Note that there is no support for Nikon lens features such as focus and aperture motor controls.	G2-AM42-MOUNT4

Cables are available directly from our preferred source: (see <u>Components Express</u> Right-Angle Cable Assemblies).

Hardware and Software Environments

The following describes suggested hardware and supported software for successful imaging systems using the Nano-CXP.

Mounting

The Nano-CXP requires a mounting platform which includes camera heatsinking. Thermal management and heat dissipation is mandatory to ensure the camera remains within the stated operating temperature specification. See section Mechanical Specifications with M42 Mount: for the location of the camera mounting screw holes.

Frame Grabbers and Cabling

The Teledyne DALSA Xtium-CXP PX8 frame grabber is recommended for error free acquisitions with the Nano-CXP camera (contact sales for additional information).

See <u>Cable Manufactures Contact Information</u> for contact information for information on CXP cable suppliers and various I/O solutions for your imaging solution.

Software Platforms

Platform	Notes
Support of GenICam GenCP	Camera setting, acquisition and other controls
Support of GenICam File access implementation	File access support for firmware update
Support of GenICam XML schema version 1.1	
Support of CoaXPress v1.1	
GenICam™ support — XML camera description file	Embedded within Genie Nano-CXP

Development Software for Camera Control

Teledyne DALSA Software Platform for Microsoft Windows		
Sapera LT for Windows — version 8.41 or later Includes Sapera Runtime and CamExpert. Provides everything you will need to develop imaging applications Sapera documentation provided in compiled HTML help, and Adobe Acrobat® (PDF)	Available for download http://www.teledynedalsa.com/imaging/support/	
Third Party Software Platforms		
GenICam GenCP Compliant Software And Tools	Contact your supplier	

Nano-CXP Specifications

The Nano-CXP common specifications listed first are followed by model specific tables of functional features and timing details.

Common Specifications

Camera Controls		
Communication Protocol	GenCP over CoaXPress (GenICam GenCP compliant software)	
Synchronization Modes	Free running, External triggered	
Exposure Control	Internal – Programmable via the camera API External – Timed Trigger or Trigger Width modes supported	
Exposure Time Maximum	10 sec	
Exposure Modes	Programmable in increments of 1 µs minimum time (in µs) is model specific	
	Pulse controlled via external Trigger pulse width.	
Features		
Reserved Private User Buffer	4 kB flash memory for OEM usage (deviceUserBuffer)	
Flash memory	32 MB flash memory	
Gain	In Sensor gain	
Defective Pixel Replacement	Up to 4096 entries	
Counter and Timer	1 Counter and 1 Timer. User programmable, acquisition independent, with event generation, and can control Output I/O pins	
Test image	Internal generator with choice of static and shifting patterns	
User settings	Select factory default or either of two user saved camera configurations	
CoaXPress Link Speed	6.25 Gb/s - 4 Data Lanes	
Back Focal Distance		
	12 mm (M42 mount)	
Mechanical Interface		
Camera (L x H x W) see <u>Mechanical Specifications</u>	XL Case: 38.3 mm x 59 mm x 59 mm	
Mass	XL Case: ~ 163g	
CoaXPress Connector Type	DIN 1.0/2.3 connector (CXP-6 maximum speed rating)	
Power connector	Camera power via PoCXP or by the power pins on the 10-pin I/O connector	
Electrical Interface		
Input Voltage	+24V nominal (+12 to +26 Volts DC maximum range) Supports the Power Over CXP standard (PoCXP)	
Power Dissipation (typical)	12W @ 24Vdc aux. (for the XL case)	
Environmental Conditions		

Operating Temperature (at camera front plate)	All Models: -20°C to +65°C (-4°F to +149°F) Any metallic camera mounting provides heat-sinking therefor reducing the internal temperature.
Operating Relative Humidity	10% to 80% non-condensing
Storage	-40 °C to +80 °C (-4 °F to +176 °F) temperature at 20% to 80% non-condensing relative humidity
Conformity	CoaXPress (JIIA), EU and REACH

Sensor Cosmetic Specifications

After Factory Calibration and/or Corrections are applied (if applicable — dependent on sensor)

Blemish Specifications	Maximum Number of Defects	Blemish Description
Hot/Dead Pixel defects	Typical 0.0025% Max 0.005%	Any pixel that deviates by $\pm 20\%$ from the average of neighboring pixels at 50% saturation including pixel stuck at 0 and maximum saturated value.
Spot defects	none	Grouping of more than 8 pixel defects within a sub-area of 3x3 pixels, to a maximum spot size of 7x7 pixels.
Clusters defects	none	Grouping of more than 5 single pixel defects in a 3x3 kernel.
Column defects	none	Vertical grouping of more than 10 contiguous pixel defects along a single column.
Rowdefects	none	Horizontal grouping of more than 10 contiguous pixel defects along a single row.

Test conditions

- Nominal light = illumination at 50% of saturation Temperature of camera is 45°C
- At exposures lower than 0.25 seconds
- At nominal sensor gain (1x)

Dynamic Range & Signal to Noise Ratio Test Conditions

Dynamic Range Test Conditions

- Exposure 100µs
- 0% Full Light Level

SNR Test Conditions

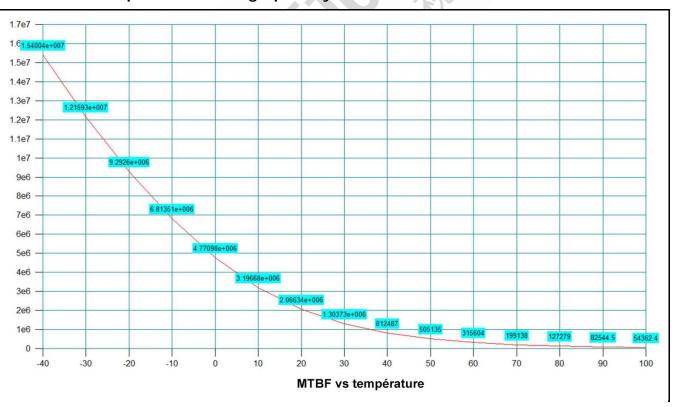
- Exposure 2000µs
- 80% saturation

Specifications calculated according to EMVA-1288 standard, using white LED light

- For On-semi Python
 - Max saturated values: up to 10 millisecond (Gain1.0) for the 16M to 25M
- For Sony
 - Max saturated values: Max Pixel format bit depth 1DN

EMI, Shock and Vibration Certifications

Compliance Directives	Standards ID	Overview	
	EN61000-4-2: 2008	Electrostatic discharge immunity test	
	EN61000-4-3: 2006 A1: 2007 A2: 2010	Radiated, radio-frequency, electromagnetic field immunity test	
	EN61000-4-4: 2004	Electrical fast transient/burst immunity test	
	EN61000-4-5: 2005	Surge immunity	
9-	EN61000-4-6: 2008	Immunity to conducted disturbances, induced by radio-frequency fields	
CE	EN61000-4-8: 2009	Power frequency magnetic field immunity	
	EN61000-4-11: 2004	Voltage variations immunity	
	EN61000-6-2: 2005	Electromagnetic immunity	
	EN61000-6-4: 2007	Electro magnetic emissions	
	CISPR 11: 2009 A1: group 1 FCC, part 15, subpart B: 2010	Limit: class A Conducted Emissions	
	CISPR 22: 2008 Limit: class A	LAN port Conducted Emissions	
FCC	Part 15, class A		
RoHS	Compliancy as per European directive 2011/65/EC		
Vibration & Shock Tests	Test Levels (while operating)	Test Parameters	
Random vibrations	Level 1: 2 grms 60 min. Level 2: 4 grms 45 min. Level 3: 6 grms 30 min.	Frequency range: 5 to 2000 Hz Directions: X, Y, and Z axes	
Shocks	Level 1: 20 g / 11 ms Level 2: 30 g / 11 ms Level 3: 40 g / 60 ms	Shape: half-sine Number: 3 shocks (+) and 3 shocks (-) Directions: ±X, ±Y, and ±Z axes	
Additional information concerning test conditions and methodologies is available on request.			

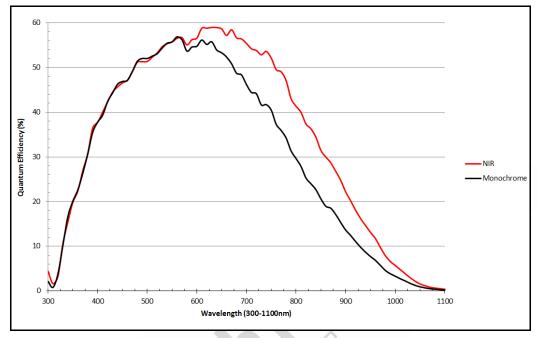

Mean Time between Failure (MTBF)

The analysis was carried out for operating temperatures varying from - 40 to 100 $^{\circ}$ C. The following table presents the predicted MTBF and Failure Rate Values (**FIT**).

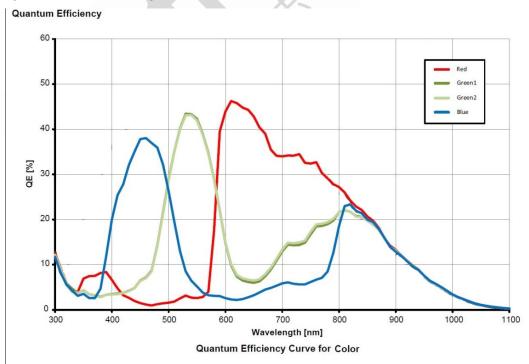
*FIT calculations are based on the Bellcore/Telcordia SR-332—Method 1—Case 3 standards.

	Camera Assembly		
Temperature (°C)	MTBF (hours)	MTBF (years)	Failure Rate (FIT) *
-40	15,401,201	1,758	64.93
-20	9,292,817	1,061	107.61
0	4,770,992	545	209.6
20	2,066,329	236	483.95
40	812,486	93	1230.79
60	315,604	36	3168.53
80	127,279	15	7856.77
100	54,362	6	18395.1

MTBF versus temperature shown graphically


Nano-CXP Specifications: M5100, C5100, M4090, C4090

Model specific specifications and response graphics for the On-Semi Python (25K & 16K) series are provided here. The response curves describe the sensor, excluding lens and light source characteristics.


Supported Features	M5100 &	C5100	M4090 8	C4090
Resolution	5120 x 5120		4096 x 4096	
Sensor	On-Semi Python25K (25M)		On-Semi Python16K (16M)	
Pixel Size	4.5 μm x 4.5 μm			
Shutter Type	Full	frame electronic g	lobal shutter function)
Full Well charge	12ke (max)			
Mode Option	Normal Readout Mode	Fast Readout Mode	Normal Readout Mode	Fast Readout Mode
Maximum Frame Rate (8-bit)	46.8 fps	80.0 fps	65.4 fps	120 fps
Pixel Format (Mono)		Mon	0 8	
Pixel Format (Color)		Bayer	8 bit	
Trigger to Exposure Minimum delay (<i>Synchronous Exposure</i>)		91	ıs	
Trigger to Exposure Minimum delay (<i>Reset Exposure</i>)		91	ıs	
Trigger to Exposure Start jitter (Synchronous Exposure)	*	Up to 1 I	ine time	
Trigger to Exposure Start jitter (Reset Exposure)	0 μs			
Exposure Time Minimum (see "exposure Time Actual" in Sensor Control)	34 μs			
Horizontal Line Time	4.14 µs	2.42 µs	3.70 µs	1.97 µs
Min. Time from End of Exposure to Start of Next Exposure	101 µs	68 µs	101 μs	68 µs
Readout Time	(2 * Horizor	(Horizontal Line Ti Ital Line Time at M	me * NB Lines) + aximum Sensor Widt	th), in µs
Auto-Brightness		Ne)	
Black offset control		Yes (ii	n DN)	
Gain Control	In-sensor Analog Gain (1.0x to 3.17x) in 4 steps (1.0x, 1.26x, 2.87x, 3.17x)			
Binning Support		Ne)	
Decimation Support	No			
Defective Pixel Replacement	Yes, up to 2048 pixel positions			
Image Correction	Flat Line Correction (Factory and 4 User Defined entries – Monochrome Only) Lens Shading correction (Factory and 2 User Defined entry) Noise Reduction			
Image Flip support	No			
Multi-ROI Support		Ne	0	
Output Dynamic Range (dB)	55.3			
SNR (dB)		39	.5	

Spectral Response

On-Semi Python Series — Monochrome and NIR

On-Semi Python Series — Bayer Color

Defective Pixel Specification for Models 5100/4090

These defective pixel specifications in the following table are as published by the sensor manufacturer. Genie Nano cameras apply defective pixel corrections to improve the camera performance.

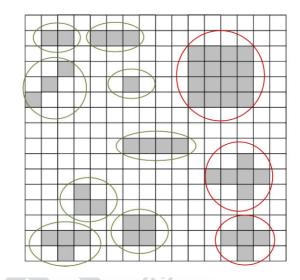
	Number of defective pixels allowed in the full window size of 5120 x 5120 (i.e. model 5100).
Defective Pixels (max: 1000)	For mono devices: A defective pixel is defined as a pixel which has a response that deviates 102 LSB10 in a dark image or a corrected gray image, or a saturated image, from the local median of the neighboring pixels in a 7 x 7 block.
	The defective pixels in dark, gray and saturated images are stored a in a global defect map. The limit is applied to the global defect map.
Defective Column 0 defective columns allowed	Number of defective columns in the full window size of 5120 x 5120 derived from dark, half scale and saturated image.
	For Mono devices: A bad column is defined as a column which has a response that deviates 48 LSB10 in a dark image, or a corrected gray or a saturated image, from the local median of 11 neighboring columns (+/- 5 left/right columns).
Defective Row	Number of defective rows in the full window size of 5120 x 5120 derived from dark, half scale and saturated image.
0 defective rows allowed	For Mono devices: A bad row is defined as a row which has a response that deviates 48 LSB10 in a dark image, or a corrected gray or a saturated image, from the local median of 11 neighboring rows (+/- 5 top/bottom rows).
continued next page	

Defective Cluster Definition

Number of clusters allowed in the full window size of 5120 X 5120. A cluster is defined as a group of neighboring defective pixels (top, Bottom side, not diagonal), derived from the global defect map.

For color devices: The pixels are divided per color channels (R, G1, G2, B) and then calculated with the same methodology as mono devices.

Refer to the graphic below:


The number of defective pixels in one cluster is the class (F) of the cluster:

F2 (max 5): 2 defective pixels in the cluster

F3 (max 4): 3 defective pixels in the cluster

F4 (max 3): 4 defective pixels in the cluster

F5 (max 0): 5 or more defective pixels in the cluster

Firmware Files for These Models

The latest firmware files for all Nano models are available on the Teledyne DALSA support web site: http://www.teledynedalsa.com/imaging/support/downloads/firmware/

The firmware files for currently available models are listed below. The xx variable denotes the current build number.

M4090, M5100 Monochrome CXP models - 4 Lane CoaXPress 6Gbps Interface

Genie_Nano-CXP_OnSemi_Python_25M_HSD_Firmware_1CA23.xx.cbf

Nano-CXP Installation

If you are familiar with CoaXPress cameras and Teledyne DALSA frame grabbers, follow these steps to quickly install and acquire images with Genie Nano-CXP and the CamExpert tool provided with Sapera LT in a Windows OS system.

Quick Start (using a Teledyne DALSA Frame Grabber)

- Install Sapera 8.41 (or later). Use the Full SDK version with support for Teledyne DALSA frame grabber boards.
- Install the Teledyne DALSA CoaXPress frame grabber board along with its driver.
- Start CamExpert. The plug-and-play feature of CXP frame grabber and camera will automatically configure frame buffer, data lanes, and frame rate parameters to match the Nano-CXP model being used. At this time do not configure for an external trigger.
- Connect the Nano-CXP with 4 camera cables. The Teledyne DALSA CXP frame grabber supports PoCXP (power over CoaXPress) for a simple camera power solution.
- Enable PoCXP by its frame grabber feature. If not using PoCXP connect a power supply to the Nano-CXP via its <a href="https://www.nocxp.
- When the Nano-CXP boots, CamExpert will read and display the camera features available with that model.
- The Nano-CXP status **LED has changed to flashing green**, indicating it is in free running acquisition mode. See <u>LED States</u> on Power Up for all status LED conditions.
- From the Nano-CXP Image Format Feature Category, select the *Moving Grey Diagonal Ramp* test pattern from the *Test Image Selector* Parameter.
- Click grab. You will see the moving pattern in the CamExpert display window.
- If a camera lens is attached, turn off the test pattern and grab live again. Adjust the lens aperture plus Focus, and/or adjust the Nano Exposure Time and frame rate as required.

General Installation Overview

Connecting a Nano-CXP to a frame grabber is similar whether using a Teledyne DALSA frame grabber board with Sapera LT SDK or a third party frame grabber with its own SDK.

Camera Firmware Updates

Under Windows, the user can upload new firmware, using the <u>File Access Control</u> features provided by the Sapera CamExpert tool.

Download the latest firmware version released for any Nano-CL model from the Teledyne DALSA support web page: http://www.teledynedalsa.com/imaging/support/downloads/firmware/

The Camera Works — Now What

Consult this manual for detailed Nano-CXP feature descriptions, as you write, debug and optimize your imaging application. Consult the frame grabber manual for all board control features.

Nano-CXP Connectors and Status LED Overview

Connectors

The Nano-CXP has a connector for I/O and four CoaXPress data lane links:

- A 10 pin I/O connector for camera power, plus trigger, strobe and general I/O signals. The
 connector supports a retention latch, while alternately the Nano-CXP case supports using an I/O
 cable with thumbscrews. Teledyne DALSA provides optional cables for purchase (see
 Ruggedized Cable Accessories). Also see 10-pin I/O Connector Details for pin out specifications.
- Four CoaXPress Link connectors are available for data output. Use a CoaXPress frame grabber with the Nano-CXP. See <u>Components Express Contact Information</u> for a variety of CoaXPress cables.

The following figure of the Genie Nano-CXP back shows connector and LED locations along with identification labels. See <u>Mechanical Specifications</u> — Nano-CXP for details on the connectors and camera mounting dimensions.

Genie Nano-CXP – Rear View

LED Indicators

The Genie Nano-CXP has one multicolor LED to provide a simple visible indication of camera state, as described below. The CoaXPress link connectors do not have any status LED indicators.

Camera Status LED Indicator

The camera is equipped with one LED to display its operational status. When more than one condition is active, the LED color indicates the condition with the highest priority. The following table summarizes the LED states.

LED State	Definition
LED is off	No power to the camera
Steady Blue	Initial state on power up before flashing.
Steady Orange	Camera initialization sequence in progress.
Steady Green	Device / Host connected, but no data being transferred.
Flashing Green	Acquisition in progress. Flashing occurs on frame acquisition. Note that flashing rate is constant – irrelevant of the frame rate.
Fast Flashing Blue	File Access Feature is transferring data such as a firmware update, etc.
Fast Flashing Red	System error (e.g. internal error).

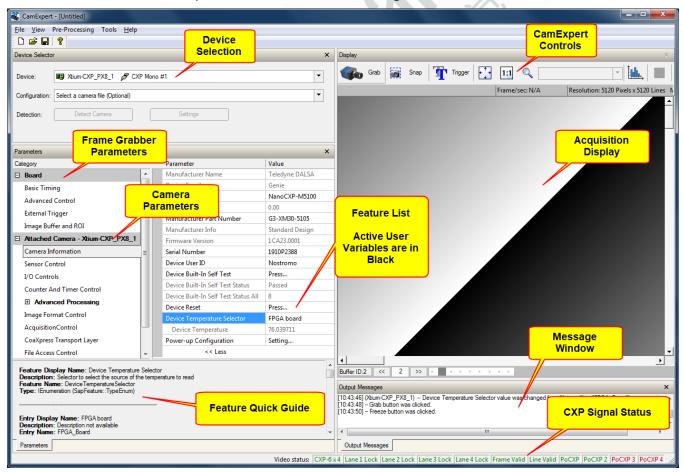
Preventing Operational Faults due to ESD

Nano camera installations which do not protect against ESD (electrostatic discharge) may exhibit operational faults. Problems such as random packet loss, random camera resets, and random loss of Ethernet connections, may all be solved by proper ESD management.

Teledyne DALSA has performed ESD testing on Nano cameras using an 8 kilovolt ESD generator without any indication of operational faults. The two following methods, either individually or together will prevent ESD problems.

- Method 1: Use a shielded/grounded power supply that connects ground to pin-10 of the I/O connector. The Nano case is now properly connected to earth ground and can withstand ESD of 8 kilovolts, as tested by Teledyne DALSA.
- Method 2: Mount the camera on a metallic platform with a good connection to earth ground.

Operational Reference


Using CamExpert with Nano CXP Cameras

The Sapera CamExpert tool allows a user to test the camera and frame grabber combination and their functions. Additionally CamExpert saves the Teledyne DALSA frame grabber user settings as individual camera parameter files on the host system (*.ccf). The camera settings are saved within the camera as a user set.

An important component of CamExpert is its live acquisition display window which allows immediate verification of timing or control parameters without the need to run a separate acquisition program.

CamExpert Panes

The various areas of CamExpert are summarized in the figure below.

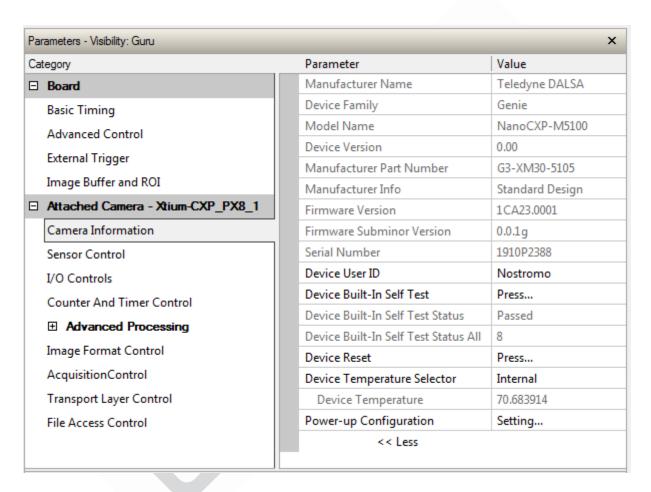
• **Device pane**: View and select from any installed Sapera acquisition device if more than one is installed in the computer. After a device is selected CamExpert will only present parameters applicable to that device.

- Parameters pane: Allows viewing or changing all acquisition parameters supported by the
 acquisition device or frame grabber. This avoids confusion by eliminating parameter choices
 when they do not apply to the hardware in use.
 When using a Teledyne DALSA frame grabber and camera, CamExpert groups all frame grabber
 parameters first and then follows with the supported camera features. Together the user
 configures the imaging system.
- **Display pane**: Provides a live or single frame acquisition display. Frame buffer parameters are shown in an information bar above the image window.
- Control Buttons: The Display pane includes CamExpert control buttons. These are:

Grab Freeze	Acquisition control button: Click once to start the frame grabber live grab mode, click again to stop. The Nano is always in free running acquisition mode unless configured to use an external trigger.
Snap Snap	Single frame grab: Click to acquire one frame from the frame grabber device.
Trigger	Software trigger button: With the I/O control parameters set to Trigger Enabled / Software Trigger type, click to send a single software trigger command.
1:1 🔍	CamExpert display controls: (these do not modify the frame buffer data) Stretch (or shrink) image to fit, set image display to original size, or zoom the image to any size and ratio. Note that under certain combinations of image resolution, acquisition frame rate, and host computer speed, the CamExpert screen display may not update completely due to the host CPU running at near 100%. This does not affect the acquisition.
Îhh.,	Histogram / Profile tool: Select to view a histogram or line/column profile during live acquisition.

- Output pane: Displays messages from CamExpert, camera or the interface driver.
- CXP Signals: Displays the status of CXP signals plus active PoCXP connections.

CamExpert View Parameters Option


While the **Board** section shows all frame grabber parameters, the **Attached Camera** section shows camera features filtered by a Visibility attribute which selects the targeted user. These vary from Beginner (features required for basic operation of the device) to Guru (optional features required only for complex operations).

Choose parameter visibility via the [<< Less More>>] control below each feature list. You can also choose the Visibility level from the *View – Parameters – Visibility* options menu.

Camera Information Category

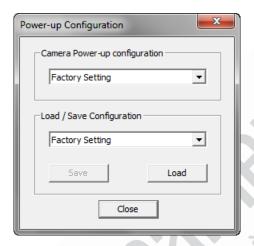
Camera information can be retrieved via a controlling application. Parameters such as camera model, firmware version, etc. are read to uniquely identify the connected Nano-CXP device. These features are typically read-only.

Features listed in the description table but tagged as Invisible are usually for Teledyne DALSA or third party software usage—not typically needed by end user applications.

Camera Information Feature Descriptions

The following table describes these parameters along with their view attribute and in which device version the feature was introduced. Additionally the Device Version column will indicate which parameter is a member of the DALSA Features Naming Convention (indicated by **DFNC**), versus the GenICam Standard Features Naming Convention (SFNC tag is not shown).

New features for a major device version release following release 1.00 will be indicated by green text for easy identification.


Display Name	Feature & Values	Description	Device Version & View
Manufacturer Name	DeviceVendorName	Dis plays the device vendor name.	1.00 Beginner
Device Family	DeviceFamilyName	D is plays the device family name.	1.00 Beginner
Model Name	DeviceModelName	Displays the device model name.	1.00 Beginner
Device Version	DeviceVersion	Dis plays the device version. This tag will also highlight if the firmware is a beta or custom design.	1.00 Beginner
Manufacturer Part Number	deviceManufacturerPartNumber	Displays the device manufacturer part number.	1.00 DFNC Beginner
Manufacturer I nfo	DeviceManufacturerInfo	This feature provides extended manufacturer information about the device. Genie Nano cameras show which firmware design is currently loaded.	1.00 Beginner
Firmware Version	DeviceFirmwareVersion	Dis plays the currently loaded firmware version number. Firmware files have a unique number and have the .c bf file extension.	1.00 Beginner
SerialNumber	DeviceSerialNumber	Displays the device's factory set serial number.	1.00 Expert
Device User I D	D e viceUserID	Feature to store a user-programmable identifier of up to 63 characters. The default factory setting is the camera serial number. (RW)	1.00 Beginner
Device Built-In Self Test	deviceBIST	C ommand to perform an internal test which will determine the device status. (W)	1.00 Beginner
Device Built-In Self Test Status	deviceBISTStatus	Return the status of the device Built-In Self- Test. Possible return values are device- specific.	1.00 Beginner
Pas s ed	Pas s ed	No failure detected	
Last firmware update failed	FirmwareUpdateFailure	Las t firmware update operation failed.	
FPGA Cyclic Redundancy Check Failed	FPGA_CRC_Failure	FPGA Cyclic Redundancy Check Failed	
Unexpected Error	Unexpected_Error	Switched to recovery mode due to unexpected software error.	
Sens or I nitialization Failure	Sens or Failure	There was an error initializing the sensor. The camera may not be able to capture images.	
Device Built-In Self Test Status All	deviceBISTStatusAII	Return the status of the device Built-In Self- Test as a bitfield. The meaning for each bit is device-specific. A value of 0 indicates no error.	1.00 DFNC Beginner
Device Reset	DeviceReset	Resets the device to its power up state. (W)	1.00 Beginner
Device Temperature Selector	DeviceTemperatureSelector	Select the source where the temperature is read.	1.00 Beginner
Internal	Internal	Value from FPGA and or PHY temperature.	
MaxI nternal	MaxI nternal	Records the highest device temperature since power up. Value is reset on power off.	
Device Temperature	DeviceTemperature	The temperature of the selected source in degrees Celsius. Maximum temperature should not exceed +70°C for reliable operation.	1.00 Beginner

Power-up Configuration Selector	U s er Set Default Selector	Selects the camera configuration set to load and make active on camera power-upor reset. The camera configuration sets are stored in camera non-volatile memory. (RW)	1.00 Beginner
Factory Setting	Default	Select the default camera feature settings saved by the Factory.	
Us erSet 1	Us er Set 1	Select the User defined Configuration space UserSet1 to save to or load from features settings previously saved by the user.	
Us er Set 2	Us er Set 2	Select the User defined Configuration space UserSet2 to save to or load from features settings previously saved by the user.	
User Set Selector	U s er Set Selector	Selects the camera configuration set to load feature settings from or save current feature settings to. The Factory set contains default camera feature settings. (RW)	1.00 Beginner
Factory Setting	Default	Select the default camera feature s ettings saved by the factory.	
Us er Set 1	Us er Set 1	Select the Us er Defined Configuration space Us er Set 1 to s ave to or load from features settings previously saved by the user.	
UserSet 2	Us er Set 2	Select the User Defined Configuration space UserSet1 to save to or load from features settings previously saved by the user.	
Load Configuration	UserSetLoad	Loads the camera configuration sets pecified by the User Set Selector feature, to the camera and makes it active. Cannot be updated during a Sapera transfer. (W)	1.00 Beginner
Save Configuration	UserSetSave	Saves the current camera configuration to the user set specified by the User Set Selector feature. The user sets are located on the camera in non-volatile memory. (W)	1.00 Beginner
Serial Number	DeviceID	Dis plays the device's factory set cameras erial number.	1.00 Invisible
Calibration Date	deviceCalibrationDateRaw	Date when the camera was calibrated.	1.00 Invisible
Device Acquisition Type	deviceAcquisitionType	Displays the Device Acquisition Type of the product.	1.00 DFNC
Sens or	Sens or	The device gets its data directly from a sensor.	Invisible
Device TL Version Major	DeviceTLVersionMajor	Major version of the device's Transport Layer.	1.00 Invisible
Device TL Version Minor	DeviceTLVersionMinor	Minor version of the device's Transport Layer.	
	userSetError	Error Flags for UserSetLoad & UserSetSave	1.00 Invisible
	NoError	No Error	Hivisible
	LoadGenericError	Unknown error	
	LoadBusyError	The camera is busy and cannot perform the action	
	LoadMemoryError	Not enough memory to load set	
	LoadFileError	Internal file I/O error	
	Load I nvalid Set Error	At least one register could not be restored properly	
	LoadRes ourceManagerError	An internal error happened related to the res ource manager	
	SaveGenericError	Unknown error	
	SaveBus yError	The camera is busy and cannot perform the action	
	SaveMemoryError	Camera ran out of memory while savings et	

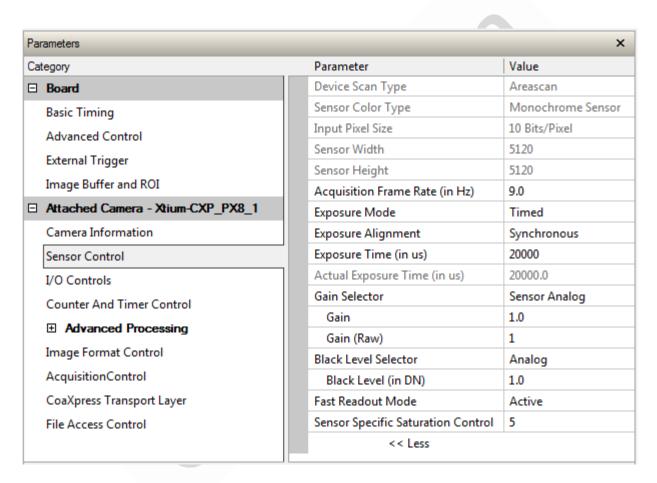
	SaveFileError	Internal file I/O error	
	Savel nvalidSetError	An invaliduser set was requested	
	Sav eRes our ceManager Error	An internal error happened related to the res ource manager	
DFNC Major Rev	deviceDFNCVersionMajor	Major revision of Dalsa Feature Naming Convention which was used to create the device's XML.	1.00 DFNC Invisible
DFNC Minor Rev	deviceDFNCVersionMinor	Minorrevision of Dalsa Feature Naming Convention which was used to create the device's XML.	1.00 DFNC Invisible
SFNC Major Rev	DeviceSFNCVersionMajor	Major Version of the Genicam Standard Features Naming Convention which was used to create the device's XML.	1.00 DFNC Invisible
SFNC Minor Rev	DeviceSFNCVersionMinor	Minor Version of the Genicam Standard Features Naming Convention which was used to create the device's XML.	1.00 DFNC Invisible
SFNC SubMinor Rev	DeviceSFNCVersionSubMinor	SubMinorVersion of the Genicam Standard Features Naming Convention which was used to create the device's XML.	1.00 Invisible

Power-up Configuration Dialog

CamExpert provides a dialog box which combines the features to select the camera power-up state and for the user to save or load a Nano camera state.

Camera Power-up Configuration

The first drop list selects the camera configuration state to load on power-up (see feature User Set Default Selector). The user chooses from one factory data set or one of two possible user saved states.


Load / Save Configuration

The second drop list allows the user to change the camera configuration any time after a power-up (see feature *UserSetSelector*). To reset the camera to the factory configuration, select *Factory* Setting and click Load. To save a current camera configuration, select UserSet 1 or 2 and click Save. Select a saved user set and click Load to restore a saved configuration.

Sensor Control Category

The Genie Nano-CXP sensor controls, as shown by CamExpert, groups sensor specific parameters. This group includes controls for frame rate, exposure time, gain, etc. Parameters in gray are read only, either always or due to other feature settings. Parameters in black are user set in CamExpert or programmable via an imaging application.

Features listed in the description table that are tagged as *Invisible* are usually for Teledyne DALSA or third party software usage—not typically needed by end user applications. Also important, features shown by CamExpert may change with different Genie Nano-CXP models.

Sensor Control Feature Descriptions

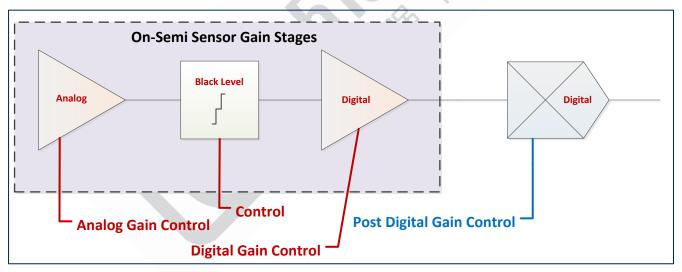
The following table describes these features along with their view attribute and device version. For each feature the device version may differ for each camera sensor available.

When a Device Version number is indicated, this represents the camera software level, not a firmware revision number. As Genie Nano capabilities evolve the device version will increase, therefore identifying the supported function package. New features for a major device version release will be indicated by green text for easy identification.

The description column will indicate which feature is a member of the DALSA Features Naming Convention (indicated by DFNC), versus the GenICam Standard Features Naming Convention (SFNC tag is not shown).

Display Name	Feature & Values	Description	Device Version
			& View
Device Scan Type	DeviceScanType	Defines the scan type of the device's sensor. Genie Nano-CL is an Areascan camera.	1.00 Beginner
Areas can	Areas can	Device us es an Areas can s ensor.	beginner
SensorColorType	sensorColorType	Defines the camera sensor color type.	1.00 DFNC
Monochrome Sens or	Monochrome	Sens or color type is monochrome.	Beginner
Monochrome Sens or With Polarization Filter	Monochrome_Polarized	Sens or color type is monochrome with a polarization filter.	
Bayer Sens or	CFA_Bayer	Sens or color type is Bayer Color Filter Array (CFA).	
Bayer Sens or With Polarization Filter	CFA_Bayer_Polarized	Sens or color type is Bayer Color Filter Array (CFA) with a polarization filter.	
I nput Pixel Size	pixelSizeInput	Size of the image input pixels, in bits per pixel.	
8 Bits/Pixel	Врр8	Sens or output data path is 8 bits per pixel.	1.00
10 Bits/Pixel	Bpp10	Sens or output data path is 10 bits per pixel.	DFNC Guru
12 Bits/Pixel	Bpp12	Sens or output data path is 12 bits per pixel.	
SensorWidth	SensorWidth	Defines the sensor widthin active pixels.	1.00 Expert
SensorHeight	SensorHeight	Defines the sensor height in active lines.	1.00 Expert
A c quisition Frame Rate	A c quisitionFrameRate	Specifies the camera internal frame rate, in Hz. A ny user entered value is automatically adjusted to a valid camera value. Note that a change in frame rate takes effect only when the acquisition is stopped and restarted.	1.00 Beginner
Exposure Mode	ExposureMode	Sets the operation mode for the camera's exposure (or electronic shutter).	1.00 Beginner
Timed	Timed	The exposure duration time is set using the Exposure Time feature and the exposure starts with a FrameStart event.	
Trigger Width	TriggerWidth	Uses the width of the trigger signal pulse to control the exposure duration. Use the Trigger Activation feature to set the polarity of the trigger. The Trigger Width setting is applicable with Trigger Selector = Single Frame Trigger (Start). Note that the Line I nverter feature setting may affect the polarity of the trigger signal and is only available when exposureAlignment = Reset.	
Exposure Alignment	exposureAlignment	Exposure Alignments pecifies how the exposure is executed in relationship to the sensor capabilities and current frame trigger.	1.00 DFNC Beginner
Synchronous	Synchronous	Exposure is synchronous to the internal timing of the sensor. The readout is concurrent to the exposure for the fastest possible frame rate. When a valid trigger is received and the ExposureTime is shorter than the readout period, the ExposureStart event is latched in the previous frame's readout. That is; the ExposureStartEvent is delayed and is initiated when the actual exposure starts such that the exposure ends and readout begins as soon as the previous readout has completed.	
Res et	Res et	Sens or timing is res et to initiate exposure when a valid trigger is received. Readout is sequential to exposure, reducing the maximum achievable frame rates. That is, a trigger received during exposure or readout is ignored since data would be lost by performing a res et.	
Exposure Time	ExposureTime	Sets the exposure time (in microseconds) when the	1.00

A c tual E xposure Time	exposureTimeActual	A c tual E xposure Time performed by sensor due to its design, based on the requested E xposure Time.	1.00 Beginner
Gain Selector	GainSelector	Selects which gain is controlled when adjusting gain features.	1.00 Beginner
Sens or Analog	Sens or Analog	Apply an analog gain adjustment within the sensor to the entire image.	
Sens or Digital	Sens or Digital	Apply a digital gain adjustment within the sensor to the entire image.	
Digital	DigitalAll	Apply a digital gain adjustment to the entire image. This independent gain factor is applied to the image after the sensor.	
Gain	Gain	Sets the selected gain as an amplification factor applied to the image. User adjusts the <i>Gain</i> feature or the <i>GainRaw</i> feature.	1.00 Beginner
Gain (Raw)	GainRaw	Raw Gain value that is set in camera (Model Specific for range and step values).	1.00 Guru
Black Level Selector	BlackLevelSelector	Selects which Black Level to adjust using the Black Level features.	1.00
Analog	AnalogAll	Sens or Dark Offs et	Beginner
Black Level	BlackLevel	C ontrols the black level as an absolute physical value. This represents a DC offset applied to the videosignal, in DN (digital number) units. The Black Level Selector feature specifies the channel to adjust.	1.00 Beginner
Fast Readout Mode	fastReadoutMode	Selects the sensor's readout mode.	1.00
Off	Off	When this mode is off, the row blanking and row readout occur sequentially in the sensor.	DFNC Guru
Active	Active	When this mode is active, the row blanking and row readout occur in parallel in the sensor. This helps achieve a lower total frame readout time resulting in a fas ter maximum frame rate. There are minor DN column artifacts, typically of no significance.	
Sensor Specific Saturation Control	sensorSpecificSaturationControl	Specific for this sensor. Increasing this value can remove the black sun effect (over-saturated pixels that revert to black data) when the strobe lighting extends longer than the exposure period.	1.00 DFNC Guru
Black Level Raw	BlackLevelRaw	C ontrols the black level as an absolute physical value.	1.00 Invisible

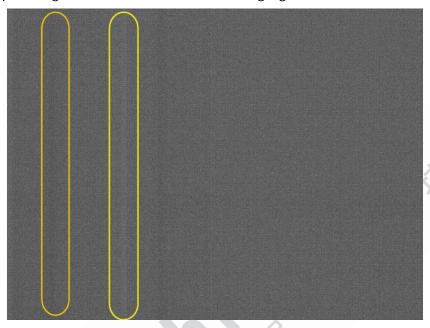

Black Level/Gain Control Details (On-Semi Python sensors)

The Gain and Black level functions are applied at the sensor and/or on the digital image values output by the sensor, as described below.

- **Gain Selector = Sensor Analog**: The gain function is a linear multiplier control in 0.01 steps within the sensor hardware.
- **Gain Selector = Sensor Digital**: The gain function is a linear multiplier control in 0.1 steps within the sensor hardware.
- **Important**: Digital noise increases linearly and quickly with higher gain values. Users should evaluate image quality with added gain.
- **Gain (Raw)**: Shows the raw sensor control for each gain stage or an alternative method to control sensor gain.
- **Black Level**: This offset variable exists within the sensor. The On-Semi sensors allow an offset range between 0 and 255 DN. The factory settings default value for each sensor used by various Nano models, is recommended as per the sensor manufacturer design specifications.

Note: With the factory default offset, testing a camera's black output in 8-bit mode may show a 2 DN value difference across the image. Changing the Black Level value up or down will push sensor noise (present at the sensors native bits per pixel) to fall within one 8-bit value, thus the noise becomes hidden.

On-Semi Python Sensors Gain Stage Diagram



OnSemi Sensor Artifacts with Fast Readout Mode

Applicable only when Flat Field Correction is purposely disabled.

When Fast Readout mode is active (cameras with OnSemi sensors), the row blanking and row readout occurs in parallel in the sensor. This reduces the total frame readout time resulting in a faster maximum frame rate. As a consequence of this mode there are minor column artifacts (of very low DN), typically of no significance and irrelevant for many imaging systems. Note that these column artifacts will become more prominent as sensor gain is increased.

The image below shows a "dark" capture with Fast Readout Mode enabled and analog gain set to maximum. The artifacts will become visible as fixed pattern DN column variations near the left edge of the video frame. There are darker columns followed by lighter columns as marked by the overlay graphics. These DN variations are not random columns, but consistent between individual OnSemi sensors operating in Fast Readout mode with high gain.

Fast Readout Mode Artifacts Correction

As noted in this section, the Fast Readout mode artifacts are automatically corrected by the factory default enabled Flat Field correction.

Alternatively for **maximum acquisition quality**, disable Fast Readout Mode to eliminate acquisition DN variances, at a small reduction of the maximum frame rate. Also remember that high gain settings will increase overall sensor noise therefore additional gain should be used only when necessary.

Exposure Alignment: Overview

Exposure Control modes define the method and timing of controlling the sensor integration period. The integration period is the amount of time the sensor is exposed to incoming light before the video frame data is transmitted to the controlling computer.

- Exposure control is defined as the start of exposure and exposure duration.
- The feature **Exposure Mode** selects the controlling method for the exposure.
- The start of exposure is initiated by an internal timer signal, an external input trigger signal (Trigger Mode=ON), or a software function call.
- The exposure duration can be programmable (Exposure Mode = Timed, *free run or external trigger*) or controlled by the external input trigger pulse width (Exposure Mode = TriggerWidth).

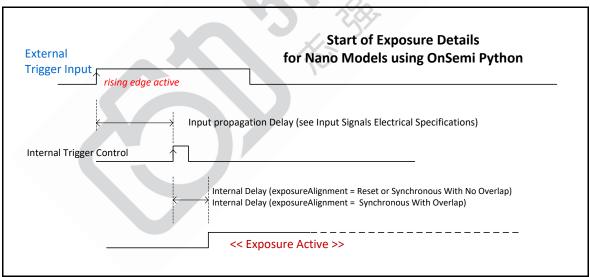
Note that different Nano models will support different combinations of exposure controls.

Synchronous Exposure Alignment

Exposure is synchronous to the internal timing of the sensor. The readout is concurrent to the exposure for the fastest possible frame rate.

When a valid trigger is received and the Exposure Time is shorter than the readout period, the Exposure Start event is latched in the previous frame's readout. That is; the Exposure Start Event is delayed and is initiated when the actual exposure starts such that the exposure ends and readout begins as soon as the previous readout has completed.

- The programmable exposure duration is in 1µs steps.
- Exposure duration is from a camera sensor specific minimum (in µs) up to 10 sec.
- Any trigger received before the start of frame readout is ignored and generates an invalid frame trigger event.

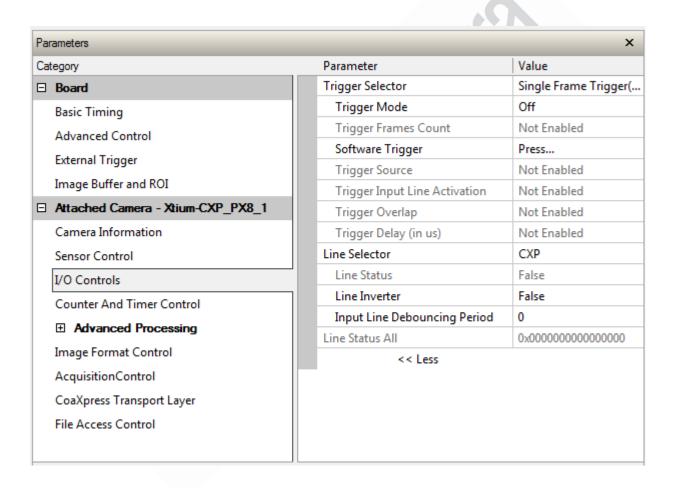

Reset Exposure Alignment

Sensor timing is reset to initiate exposure when a valid trigger is received. Readout is sequential to exposure, reducing the maximum achievable frame rates. That is, a trigger received during exposure or readout is ignored since data would be lost by performing a reset.

Sensor Exposure Timing: OnSemi Python Models

Nano cameras with OnSemi sensors have general timing characteristics as described below.

Trigger Characteristics: Start of Exposure



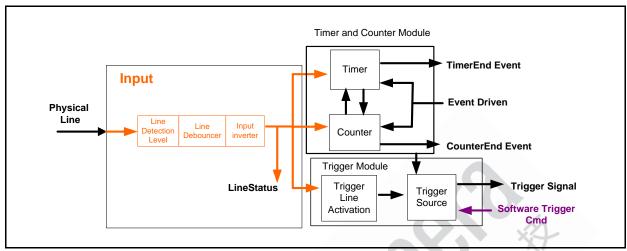
Additional triggered exposure mode features and timing specific to OnSemi sensors are described in the I/O Controls Category.

I/O Control Category

The Nano-CXP I/O controls, as shown by CamExpert, groups' features used to configure acquisition actions based on those inputs. Parameters in gray are read only, either always or due to another parameter being disabled. Parameters in black are user set in CamExpert or programmable via an imaging application.

Features listed in the description table but tagged as Invisible are usually for Teledyne DALSA or third party software usage—not typically needed by end user applications. Also important, Genie Nano cameras are available in a number of models which may support different features within this category.

I/O Control Feature Descriptions


The following table describes these features along with their view attribute and minimum firmware version required. Additionally the Device Version column will indicate which parameter is a member of the DALSA Features Naming Convention (indicated by DFNC), versus the GenICamStandard Features Naming Convention (SFNC tag is not shown).

The Device Version number represents the camera software version, not a firmware revision number. New features for a major device version release will be indicated by green text for easy identification.

Display Name	Feature & Values	Description	Device Version & View
TriggerSelector	TriggerSelector	Selects which type of trigger to configure with the various Trigger features.	1.00 Beginner
Single Frame Trigger (Start)	FrameStart	Selects a trigger starting the capture of a single frame. Frame size is determined by image format feature "Height".	
MultiFrame Trigger(Start)	FrameBurs t Start	Selects a trigger to capture multiple frames. The number of frames is specified by the "triggerFrameCount" feature.	
TriggerMode	TriggerMode	Controls the enable state of the selected trigger.	1.00
Off	Off	The selected trigger is turned off.	Beginner
On	On ,	The selected trigger is turned active.	
TriggerFrames Count	triggerFrameCount	Sets the total number of frames to acquire when a valid trigger is received. This feature is available when Trigger Selector = MultiFrame Trigger (Start).	1.00 DFNC Beginner
S oftware Trigger	TriggerSoftware	Generate a software command internal trigger immediately no matter what the TriggerSource feature is set to.	1.00 Beginner
TriggerSource	TriggerSource	Specifies the internal signal or physical input line to use as the trigger source. The selected trigger must have its TriggerMode set to ON.	1.00 Beginner
СХР	CXP	Select CXP trigger (and as sociated I/O control block) to use as the external triggers ource. See LineSelector feature for complete list.	
Software	Software	The trigger command source is only generated by software using the Trigger Software command.	
Timer1EndEvent	Timer1End	Select the TimerEnd Event as the internal trigger source.	
Counter1End Event	Counter1End	Select the CounterEnd Event as the internal trigger source.	
Trigger Input Line Activation	TriggerActivation	Select the activation mode for the selected I nput Line trigger source. This is applicable only for external line inputs.	1.00 Beginner
RisingEdge	RisingEdge	The trigger is considered valid on the rising edge of the line source signal (after any processing by the line inverter module).	
Falling Edge	FallingEdge	The trigger is considered valid on the falling edge of the line source signal (after any processing by the line inverter module).	
Any Edge	AnyEdge	The trigger is considered valid on any edge of the line sources ignal (after any processing by the line inverter module).	
Level High	LevelHigh	The trigger is considered valid on the high level of the line source signal.	
Level Low	LevelLow	The trigger is considered valid on the low level of the line source signal.	

TriggerDelay	TriggerDelay	Specifies the delay in microseconds to apply after receiving the trigger and before activating the triggerEvent.	1.00 Beginner
TriggerOverlap	TriggerOverlap	States if a trigger overlap is permitted with the Active Frame readout signal. This feature defines if a new valid trigger will be accepted (or latched) for a new frame.	1.00 Guru
Off	Off	No trigger overlap is permitted.	
ReadOut	ReadOut	Trigger is accepted immediately after the start of the readout.	
End Of Exposure	EndOfExposure	Trigger is accepted immediately after the previous exposure period. This will latch the Trigger and delay the Exposure if the end of that exposure is shorter than the previous readout.	
Line Selector	Line Selector	Selects the physical line (or pin) of the external device connector to configure.	1.00 Beginner
CXP_AVAI LABLE	CXP	Select the Coaxpress trigger.	
Line Name	lineName	Description of the physical Pin associated with the logical line.	1.00 Beginner
Coaxpres s Line	CXP	As s ociated with Coaxpres s line trigger	DFNC
Input 1	Input1	As s ociated with the logical line I nput 1	
Input 2	Input2	As s ociated with the logical line I nput 2	
Output 1	Output1	As s ociated with the logical line Output 1	
Output 2	Output2	As s ociated with the logical line Output 2	
Line Status	LineStatus	Returns the current status of the selected input or output line.	1.00 Expert
	False	The Line is logic LOW	
	True	The Line is logic HI GH	
Line Status All	LineStatusAll	Returns the current status of all available line signals, at time of polling, in a single bitfield. The order is Line1, Line2, Line3,	1.00 Expert
Line Inverter	LineInverter	C ontrol to invert the polarity of the selected input or output line signal.	1.00 Beginner
	False/True		
Input Line Debouncing Period	line De bouncing Period	Specifies the minimum delay before an input line voltage transition is recognizing as a signal transition.	1.00 Beginner DFNC
Line Format	LineFormat	Specify the current electrical format of the selected physical input or output.	1.00 Invisible
LVDS	LVDS	The line accepts LVDS level signals.	
Opto-Coupled	OptoCoupled	The line is opto-Coupled.	
Line Mode	LineMode	Reports if the physical Line is an Input or Output signal	1.00
Input	Input	The line is an input line.	Invisible
Output	Output	The line is an output line.	
Input Line Detection Level	line DetectionLevel	Specifies the voltage threshold required to recognize a signal transition on an input line.	1.00 Invisible DFNC
Thres hold for TTL	Thres hold_for_TTL	A signal below 0.8V will be detected as a Logical LOW and a signal greater than 2.4V will be detected as a Logical HIGH on the selected input line.	DFNC

I/O Module Block Diagram

Trigger Mode Details

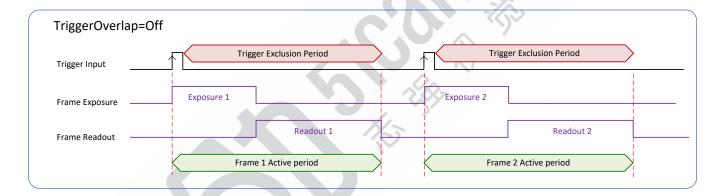
Nano-CXP image exposures are initiated by an event. The trigger event is either the camera's programmable internal clock used in free running mode, an external input to the controlling frame grabber used for synchronizing exposures to external triggers, or a programmed function call message by the controlling computer. These triggering modes are described below.

- Free running (Trigger Mode=Off): The Nano free-running mode has programmable internal timers for frame rate and exposure period. Frame rate minimums, maximums, and increments supported are sensor specific. Maximum frame rates are dependent on the required exposure.
- **Trigger Source (Trigger Mode=On)**: Exposures are controlled by an external trigger signal where the specific input line is selected by the **Trigger Source** feature.

Trigger Source Types (Trigger Mode=On)

- **Trigger Source=CXP**: The CoaXPress trigger (controlled by the frame grabber) is used as the external trigger control.
- **Trigger Source=Software**: An exposure trigger is sent as a software command. Software triggers cannot be considered time accurate due to computer latency and sequential command jitter. But a software trigger is more responsive than calling a single-frame acquisition since the latter must validate the acquisition parameters and modify on-board buffer allocation if the buffer size has changed since the last acquisition.
- **Trigger Source=Timer1End Event**: The Timer1 End Event is used as the internal trigger source. Refer to <u>Counter and Timer Controls</u> for information on those features.
- **Trigger Source=Counter1 End Event**: The Counter1 End Event is used as the internal trigger source.

Trigger Overlap: Feature Details

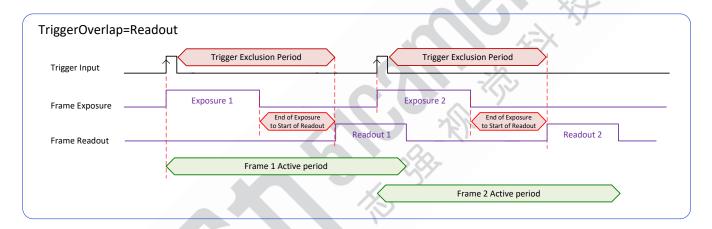

The Trigger Overlap feature defines how the Nano handles triggers that might occur more frequently than the Frame Active period (an exposure plus readout period).

If TriggerOverlap=OFF, then triggers received before the end of the Frame Active period are ignored. Other TriggerOverlap values are dependent on the Nano model and sensor used.

- TriggerOverlap=Off
- No trigger overlap is permitted.

Diagram Conditions:

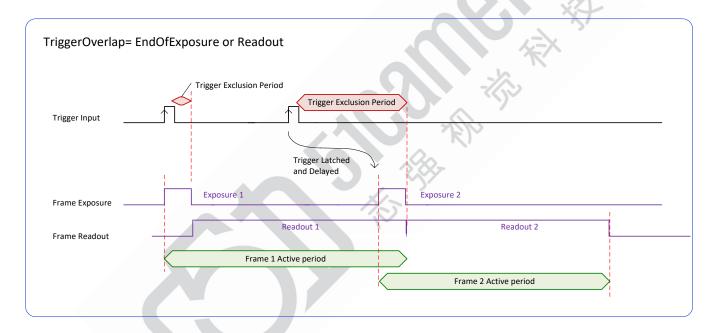
- TriggerMode=On
- ExposureMode=Timed
- TriggerActivation=RisingEdge
- TriggerDelay=0
- TriggerSelector=FrameStart
- ExposureAlignment = Synchronous
- Minimum Trigger to Exposure start delay: 3.23µs (shown as 4µs



TriggerOverlap=ReadOut

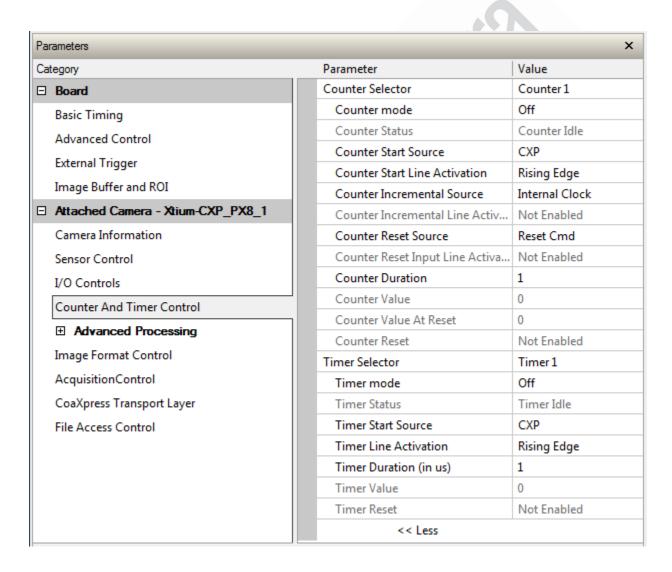
• Trigger is accepted at the beginning of the frame Readout. The "End of Exposure to Start of Readout" time is sensor dependent.

Diagram Conditions:


- TriggerMode=On
- ExposureMode=Timed
- TriggerActivation=RisingEdge
- TriggerDelay=0
- TriggerSelector=FrameStart
- ExposureAlignment = Synchronous
- Trigger to Exposure start has a delay which includes the sensor readout time plus a minimum of 62µs. An exposure always starts after the readout of the previous frame.

- TriggerOverlap = EndOfExposure
- This special condition describes the case of a short exposure relative to the readout period. A trigger received before the end of the frame readout is latched and delayed until such time that the following short exposure will end with the end of the previous frame readout. The second readout period will then start immediately.

Diagram Conditions:


- TriggerMode=On
- ExposureMode=Timed
- TriggerActivation=RisingEdge
- TriggerDelay=0
- TriggerSelector=FrameStart
- ExposureAlignment = Synchronous

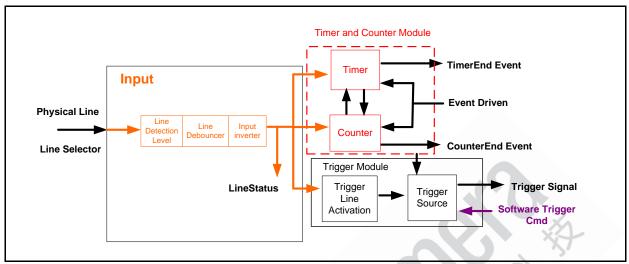
Counter and Timer Control Category

The Genie Nano-CXP counter and timer controls, as shown by CamExpert, groups parameters used to configure acquisition counters and timers. Parameters in gray are read only, either always or due to another parameter being disabled. Parameters in black are user set in CamExpert or programmable via an imaging application.

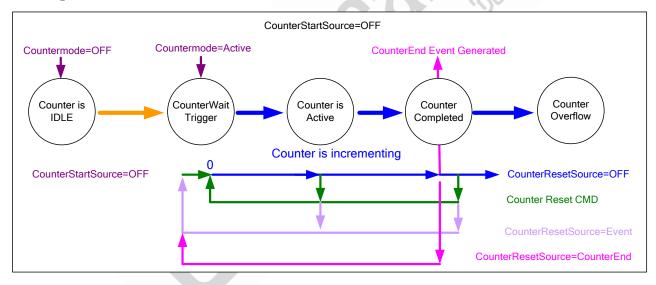
Features listed in the description table but tagged as *Invisible* are usually for Teledyne DALSA or third party software usage—not typically needed by end user applications. Also important, Nano cameras are available in a number of models which may not support the full feature set defined in this category.

Counter and Timer Control Feature Description

The following table and block diagram, describes these parameters along with their view attribute and minimum camera firmware version required. Additionally the Device Version column will indicate which feature is a member of the DALSA Features Naming Convention (indicated by DFNC), versus the GenICam Standard Features Naming Convention (SFNC tag is not shown).

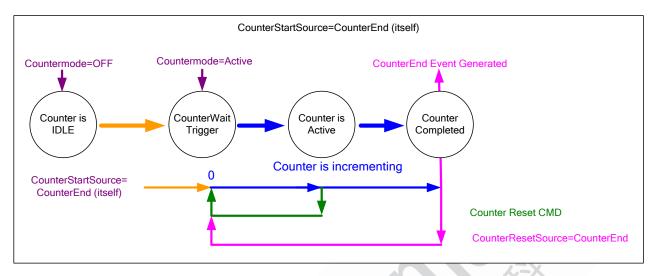

The Device Version number represents the camera software functional group, not a firmware revision number. As Nano-CL capabilities evolve the device version tag will increase, therefore identifying the supported function package. New features for a major device version release will be indicated by green text for easy identification.

Display Name	Feature & Values	Description	Device Version & View
Counter Selector	counterSelector	Selects the counter to configure.	1.00
Counter 1	Counter1	Select counter 1	Expert DFNC
C ounter mode	counterMode	Selects the counter mode. The selected Counter is either Active or Disabled. When Disabled, the Counter can be configured.	1.00 Expert DFNC
Off	Off	The s elected Counter is Disabled	
Active	Active	The s elected Counter is Enabled	
Counter Status	counterStatus	Returns the current state of the counter.	1.00
Counter I dle	Counter I dle	The counter is idle. The counterStartSource feature is set to off.	Expert DFNC
Counter Trigger Wait	CounterTriggerWait	The counter is waiting for a start trigger.	
Counter Active	CounterActive	The counter is counting for the specified duration.	
Counter Completed	CounterCompleted	The counter reached the CounterDuration count.	
Counter Overflow	CounterOverflow	The counter reached its maximum possible count.	
Counter Start Source	counterStartSource	Select the counter start source. Counter increments from 0 to the value of the counterDuration feature.	1.00 Expert DFNC
Off	Off	Counter is stopped.	
Exposure Start	Expos ureStart	Counter starts on the reception of the Exposure Start event	
Expos ure End	Expos ureEnd	Counter starts on the reception of the Exposure End event.	
Readout Start	ReadoutStart	Counter starts on the reception of the Readout Start event.	
Readout End	ReadoutEnd	Counter starts on the reception of the Readout End event.	
Frame Start	FrameStart	Counter starts on the reception of the Frame Start event.	
Valid Frame Trigger	ValidFrameTrigger	Counter's tarts on the reception of the Valid Frame Trigger.	
Rejected Frame Trigger	I nvalidFrameTrigger	Counter s tarts on the reception of the I nvalid Frame Trigger.	
CXP	CXP	Counter starts on the specified transitions on CXP trigger.	
Timer 1 End	Timer1End	Counter starts on the reception of the Timer 1 End event.	
Counter 1 End	Counter1End	Counter starts on the reception of the Counter 1 End event.	

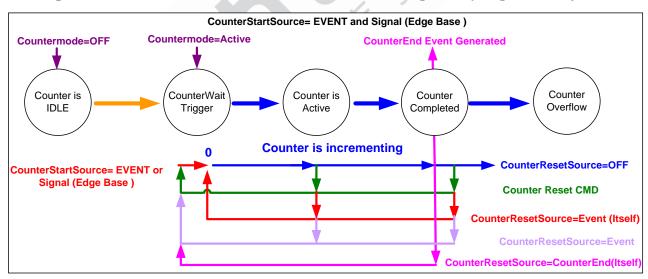

Counter Start Line Activation	counterStartLineActivation	Selects the activation mode of the input line trigger which starts the counter. This is only applicable when the counterStartSource feature selects a physical Line.	1.00 Expert DFNC	
RisingEdge	RisingEdge	Starts counting on rising edge of the selected Line.		
Falling Edge	FallingEdge	Starts counting on falling edge of the selected Line.		
Any Edge	AnyEdge	Starts counting on the falling or rising edge of the selected Line.		
Counter Incremental Source	counterIncrementalSource	Select the event source which increments the counter. The Event Control section provides details and timing diagrams for the supported events.	1.00 Expert DFNC	
Off	Off	Counter is stopped.		
Expos ure Start	Expos ureStart	Counts the number of Exposure Start events.		
Expos ureEnd	ExposureEnd	Counts the number of Exposure End events.		
Readout Start	, ReadoutStart	Counts the number of Readout Start events.		
Readout End	ReadoutEnd	Counts the number of Readout End events.		
Frame Start	FrameStart	Counts the number of Frame Start events.		
Valid Frame Trigger	ValidFrameTrigger	Counts the number of Valid Frame Triggers.		
Rej ected Frame(s) Trigger	I nvalidFrameTrigger	Counts the number of Rejected Frame(s) Trigger.		
CXP	СХР	Counts the number of transitions on CXP trigger (based on the counter Incremental Line Activation features etting).		
I nternal Clock	I nternalClock	The counter increments on each micros econd tick of the device internal Clock.		
Timer 1 End	Timer1End	Counts the number of Timer 1 End events.		
Counter IncrementalLine Activation	counterIncrementalLineActivation	Selects the counter's ignal activation mode. The counterincrements on the specified signal edge or level.	1.00 Expert DFNC	
Ris ing Edge	Ris ingEdge	Increment the counter on the rising edge of the selected I/O Line.		
Falling Edge	FallingEdge	Increment the counter on the falling edge of the selected I/O Line.		
Any Edge	AnyEdge	Increment the counter on the falling or rising edge of the selected I/O Line.		
Counter Duration	counterDuration	Sets the duration (or number of events) before the C ounterEnd event is generated.	1.00 Expert DFNC	
Counter Reset Source	counterReset Source	Selects the signal source to reset the counter. After a reset the counter waits for the next countStartSource signal or event.	1.00 Expert DFNC	
Res et Cmd	Off	Res et on reception of the Res et I command.		
Exposure Start	Expos ureStart	Res et on reception of the Expos ure Start event.		
Expos ure End	Expos ureEnd	Res et on reception of the Expos ure End event.		
Readout Start	ReadoutStart	Res et the counter on the reception of the Readout Start event.		
Readout End	ReadoutEnd	Res et the counter on the reception of the Readout End event.		
Frame Trigger	FrameStart	Res et on reception of the Frame Trigger.		
Valid Frame Trigger	ValidFrameTrigger	Res et on reception of the Valid Frame Trigger.		
Rejected Frame Trigger	I nvalidFrameTrigger	Res et on reception of the Invalid Frame Trigger.		
CXP	CXP	Res et the Counter on the specified transitions on CXP trigger.		
Timer 1 End	Timer1End	Res et on reception of the Timer End.		
Counter 1 End	Counter1End	Res et on the reception of the Counter end.		
Counter Reset Input Line Activation	counterResetLineActivation	Specify the edge transition on the selected line that will reset the selected counter.	1.00 Expert DFNC	
Ris ing Edge	RisingEdge	Res et counter on ris ing edge of the s elected s ignal.	DINO	

Falling Edge	FallingEdge	Res et counter on falling edge of the s elected signal.	
Any Edge	AnyEdge	Res et counter on the falling or ris ingedge of the selected signal	
Counter Value	counterValue	Read the current value of the selected counter.	1.00 Expert DFNC
Counter Value At Reset	counterValueAtReset	Stores the counter value of the selected counter when it was reset by a trigger or by an explicit Counter Reset command.	1.00 Expert DFNC
C ounter Reset	counterReset	Resets the selected counter to zero. The counter starts immediately after the reset. To temporarily disable the counter, set the Counter E vent Source feature to Off.	1.00 Expert DFNC
TimerSelector	timerSelector	Selects which timer to configure.	1.00
Timer 1	Timer1	Timer 1 selected	Expert DFNC
TimerMode	timerMode	Select the Timer mode. The selected Timer is Active or Disabled. When Disabled, the Timer can be configured.	1.00 Expert DFNC
Off	Off	The selected Timer is Disabled.	
Active	Active	The selected Timer is Enabled.	
TimerStatus	timerStatus	Returns the current state of the timer.	1.00 Expert
Timer I dle	TimerI dle	The timer is idle. The CounterStartSource feature is set to off.	DFNC
Timer Trigger Wait	TimerTriggerWait	The timer is waiting for a start trigger.	
Timer Active	TimerActive	The timer is counting for the specified duration.	
Timer Completed	TimerCompleted	The timer reached the TimerDuration count.	
TimerStartSource	timerStartSource	Select the trigger source to start the timer. The Event C ontrol section provides details and timing diagrams for the supported events.	1.00 Expert DFNC
TimerRes et Cmd	Off	Starts with the reception of the TimerReset I command.	
Expos ure Start	Expos ureStart	Start Timer on Exposure Start event.	
Expos ure End	ExposureEnd	Start Timer on Exposure End event.	
Readout Start	ReadoutEnd	Start Timer on Readout Start event.	
Readout End	ReadoutStart	Start Timer on Readout End event.	
Frame Start	FrameStart	Start Timer on Frame Start event.	
Frame Trigger	ValidFrameTrigger	Start Timer on Frame Trigger event.	
CXP	CXP	Start Timer on a transition of I/O CXP trigger event.	
Timer 1 End	Timer1End		
Counter 1 End	Counter1End	Start Timer on Counter 1 End event.	1.00
TimerLine Activation	timerStartLineActivation	Select the trigger activation mode which starts the timer.	Expert DFNC
Ris ing Edge	RisingEdge	Starts counter on rising edge of the selected signal.	
Falling Edge	FallingEdge	Starts counter on falling edge of the selected signal.	
Any Edge	AnyEdge	Starts counter on the falling or rising edge of the selected signal.	
Timer Duration	timerDuration	Sets the duration (in microseconds) of the timer pulse.	1.00 Expert DFNC
TimerValue	timerValue	Reads the current value (in microseconds) of the selected timer.	1.00 Expert DFNC
TimerReset	timerReset	Resets the timer to 0 while timerStatus=TimerActive. Timerthen waits for the next timerStartSource event.	1.00 Expert DFNC

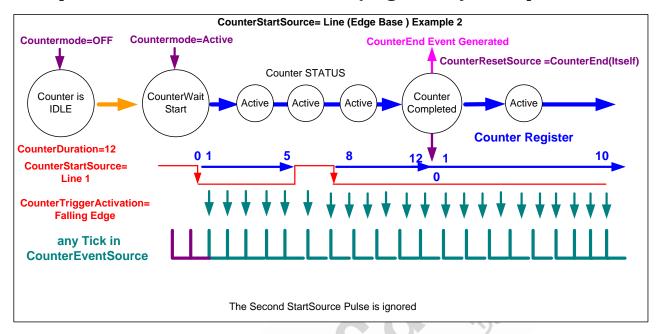
Counter and Timer Group Block Diagram



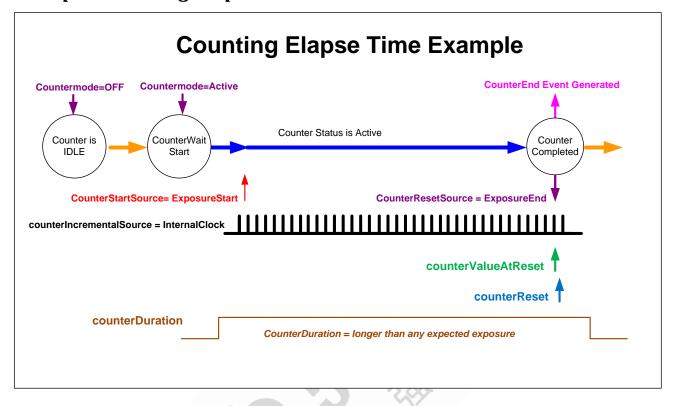
Example: Counter Start Source = OFF


- The counter starts on the counterReset Cmd.
- The counter continues unless a new **counterReset Cmd** is received, which then restarts the counter at 00.
- When Counter Reset Source = 'Event' or 'CounterEnd' the counter is reset to 00 but does not restart counting, until the next CounterReset Cmd.

Example: Counter Start Source = CounterEnd (itself)

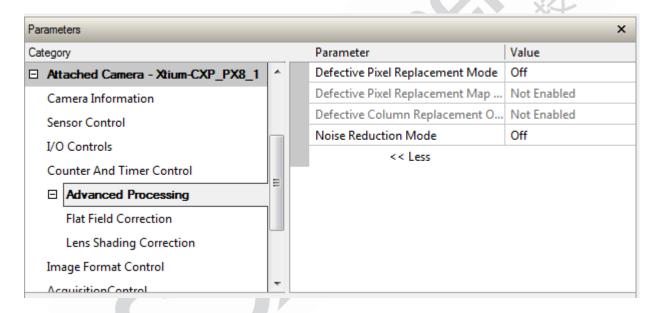


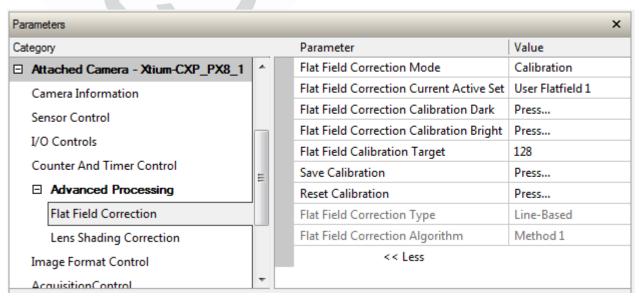
- Counter starts when Counter Mode is set to Active.
- A Counter Reset CMD will reset the counter to 00 and it then continues counting.
- **counterResetSource** must be set to **CounterEnd**. When the counterValue feature reaches the counterDuration value an event is generated and the counter is reset to 00, then continues.

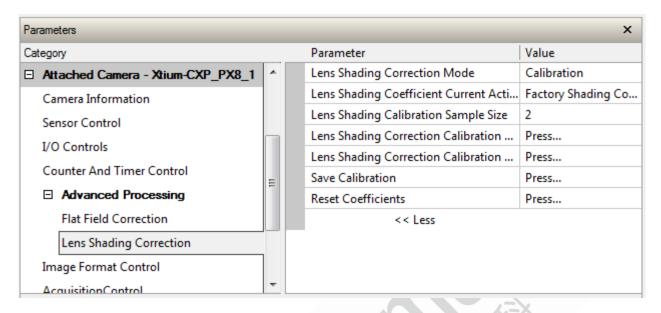

Example: CounterStartSource = EVENT or Signal (Edge Base)

Example: CounterStartSource = Line (Edge Base) Example

Example: Counting Elapse Time

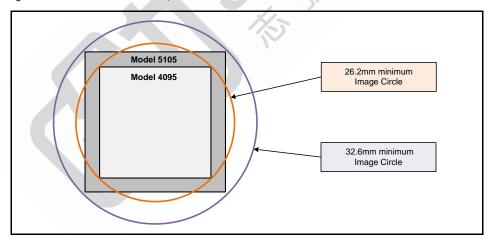

- **Countermode=Active:** Enable the counter function.
- counterIncrementalSource=InternalClock: Counter driven by internally generated microsecond clock tick.
- counterDuration="a period of time longer than any expected counter active period": In cases where the count period is not fixed by the feature "counterDuration", this will create a failsafe event to end the counter if the "CounterEnd" event fails for any reason.
- **counterStartSource** = **ExposureStart**: In this example sets the counter start event.
- **counterResetSource = ExposureEnd:** In this example sets the counter end event.
- counterValueAtReset: Reads the last counter value before reset. In this example the count value equals time in microseconds since the counter start event.
- counterReset: Force a counter value reset when required.


Advanced Processing Control Category


The Genie Nano-CXP Advanced Processing controls, as shown by CamExpert groups parameters used to configure pixel replacement, flat field correction (column based), and lens shading correction controls on monochrome cameras. Parameters in gray are read only, either always or due to another parameter being disabled. Parameters in black are user set in CamExpert or programmable via an imaging application.

Features listed in the description table but tagged as *Invisible* are usually for Teledyne DALSA or third party software usage—not typically needed by end user applications.

It is recommended that the user performs a Flat Field Calibration and save the results to the User Set if the camera is normally operated at a high temperature than the 55°C that the factory calibration was done. This eliminates the Fixed Pattern Noise (FPN) that increases at higher temperatures.



Notes about Lens Shading Calibration

Note: It is recommended that the "Lens Shading Calibration" procedure be done for every Nano-CXP/Lens combination. Calibration will eliminated any lens vignetting in the image corners or any other shading differences across the image field. Calibration will allow using a lens with a slightly smaller image circle that doesn't quite evenly expose the whole sensor. The graphic below shows how a lens used on the 16M model could be used with a 25M model after shading calibration (results will vary with different lenses).

CamExpert allows quick calibration by the user. The features for the Lens Shading Correction Group can also be accessed by the user designed application. The feature descriptions are shown below and after calibration the data should be saved in a user set.

- Lens Shading Correction Calibration Dark: Perform a dark calibration for lens shading correction. Typically done before the bright calibration, this calibration requires a dark acquisition (as little light on the sensor as possible).
- Lens Shading Correction Calibration Bright: Perform a bright calibration for lens shading correction. This calibration requires a bright featureless acquisition that is not saturated. (70% illumination is recommended).

Advanced Processing Control Feature Descriptions

The following table describes these features along with their view attribute and firmware version. As Nano-CXP capabilities evolve the device firmware version will increase. New features for a major device version release will be indicated by green text for easy identification, for that manual release.

The description column will indicate which feature is a member of the Teledyne DALSA Features Naming Convention (indicated by DFNC), versus the GenICam Standard Features Naming Convention (SFNC not shown).

Advanced Processing Group

Display Name	Feature & Values	Description	Version
Defective Pixel Replacement defective Pixel Replacement Mode Mode		Sets the mode for the defective pixel replacement.	Ver. 1.00
Off	Off	Defective Pixel Replacement is disabled.	Expert DFNC
Active	Active	Defective Pixel Replacement is enabled.	51110
Defective Pixel Replacement Map Current Active Set	defec tivePixelReplacementMapCurren tActiveSet	Sets the defective pixel replacement set.	Ver. 1.00
Factory Map	FactoryMap	Sets the factory coefficient table as active.	Expert DFNC
User Map 1	UserMap1	Sets the User Map coefficient table as active.	DINC
Defective Pixel Replacement A Igorithm	defec tivePixelReplacementAlgorithm	Specifies the defective pixel replacement algorithm.	Ver. 1.00
Method3: NeighboringPixel	Method3	This algorithm replaces a defective pixel with a neighbor.	Expert DFNC
Noise Reduction Mode	noiseReduction	Sets the mode for the pixel noise reduction.	Ver. 1.00
Off	Off	Nois e Reduction is disabled.	Expert
Active	Active	Nois e Reduction is enabled.	DFNC
Defective Column Replacement Option	defectiveColumnReplacementOption	When defectivePixelReplacementMode is A ctive, this feature allows control over defective column replacement.	Ver. 1.00 Guru
Disable	Disable	Defective Column Replacement is disabled.	DFNC
Allow	Allow	Defective Column Replacement is allowed.	
proc essingPathBpp	processingPathBpp	Processing path bits per pixel	1.00 Invisible DFNC

Flat Field Correction Group

Display Name	Feature & Values	Description	Device Version & View
Flat Field Correction Mode	flatfieldCorrectionMode	Sets the mode for the Flat Field correction. See flatfieldCorrectionType below.	1.00 Beginner
Off	Off	Flat Field Correction is disabled.	DFNC
Active	Active	Flat Field Correction is enabled.	
Calibration	Calibration	When this mode is selected, the camera is configured for flat field correction calibration. The device may automatically adjust some of its features when calibrate mode is enabled. The features that are automatically adjusted are device specific. The device will not restore these features when the Flat Field Correction Mode feature is changed from Calibrate mode to another mode. Note: do the Dark calibration before the Bright calibration. Also the calibration steps require a few seconds to execute due to CXP communication limits.	
Flat Field Correction Current Active Set	flatfieldCorrectionCurrentActiveSet	Specifies the current set of Flat Field coefficients to use.	1.00 Beginner DFNC
Factory Flatfield	FactoryFlatfield	Sets the factory Flat Field coefficient table as the current Flat Field.	DINC
Us er Flatfield 1	Us er Flatfield 1	Sets User Flat Field 1 coefficient table as the current Flat Field.	
Flat Field Correction Type	flatfieldCorrectionType Specifies the Flat Field correction type.		1.00 Guru DFNC
Line-Bas ed	LineBas e	Flat field correction is based on the average of lines of gain and offset coefficients where corrections are applied to each pixel in the column. (Correcting column to column variations).	BING
Flat Field Correction Algorithm	flatfieldCorrectionAlgorithm	Specifies the Flat Field correction algorithm to use.	1.00 Guru DFNC
Method 1	Method1	The following formula is used to calculate the flat field corrected pixel: newPixelValue[x][y] = (sens orPixelValue[x][y] - FFCOffset[x][y]) * FFCGain[x][y]	DINC
Flat Field Correction Calibration Dark	flatfieldCorrectionCalibrationDark	Perform a dark calibration. This is done before the bright calibration. This calibration requires a dark acquisition (as little light on the sensor as possible).	1.00 Expert DFNC
Flat Field Correction Calibration Bright	flatfieldCorrectionCalibrationBright	Perform a bright calibration. This is done after the dark calibration. This calibration requires a bright featureless acquisition that is not saturated.	1.00 Expert DFNC
Flat Field Calibration Target	flatfieldCalibrationTarget	Sets the target pixel value for the bright calibration.	1.00 Expert DFNC
Save Calibration	flatfieldCorrectionCalibrationSave	Save the calibration results of the flatfieldCorrectionCalibrationDark and/or flatfieldCorrectionCalibrationBright operations to the current active set.	1.00 Expert DFNC
Reset Calibration	flatfieldCorrectionCalibrationResetCoefficients	Reset the current calibration coefficients to factory defaults.	1.00 Expert DFNC
Flat Field Algorithm Buffer Format	flatfieldAlgorithmBufferFormat		1.00 Invisible DFNC
Mono8	Mono8		

Flat Field Algorithm Buffer Width	flatfieldAlgorithmBufferWidth		1.00 Invisible DFNC
Flat Field Algorithm Buffer Height	flatfieldAlgorithmBufferHeight		1.00 Invisible DFNC
Flat Field Algorithm Gain Max	flatfieldAlgorithmGainMax		1.00 Invisible DFNC
Flat Field Algorithm Gain Min	flatfieldAlgorithmGainMin		1.00 Invisible DFNC
Flat Field Algorithm Gain Divisor	flatfieldAlgorithmGainDivisor		1.00 Invisible DFNC
Flat Field Algorithm Gain Base	flatfieldAlgorithmGainBase	.0	1.00 Invisible DFNC
Flat Field Algorithm Offset Max	flatfieldAlgorithmOffsetMax	1 (10)	1.00 Invisible DFNC
Flat Field Algorithm Offset Min	flatfieldAlgorithmOffsetMin		1.00 Invisible DFNC
Flat Field Algorithm Offset Factor	flatfieldAlgorithmOffsetFactor	会	1.00 Invisible DFNC

Lens Shading Correction Group

Display Name	Feature & Values	Description	Device Version & View
Lens Shading Correction Mode	lens ShadingCorrectionMode	Sets the mode for the lens shading correction.	1.00 Expert DFNC
Off	Off	Lens Shading Correction is Disabled	DFNC
Active	Active	Lens Shading Correction is Enabled	
Calibration	Calibration	When s elected, the camera is configured for Lens Shading correction calibration. Some processing will be disabled even if the as sociated feature is enabled. Note: do the Dark calibration before the Bright calibration. Als o the calibration s teps require a few s econds to execute due to CXP communication limits.	
Lens Shading Coefficient Current Active Set	lensShadingCorrectionCurrentActiveSet	Specifies the currents et of Lens Shading Coefficients to use.	1.00 Beginner DFNC
Factory Shading Coefficients	Factory ShadingCoefficients	Sets the Factory Shading Coefficients as current.	
Us er Shading Coefficients 1	ShadingCoefficients1	Sets User Shading Coefficients set 1 as current.	
Us er Shading Coefficients 2	ShadingCoefficients2	Sets User Shading Coefficients set 2 as current.	
Lens Shading Calibration Sample Size	lensShadingCorrectionCalibrationSampleSize	Number of frames to average for Lens Shading calibration	1.00 Guru DFNC
Lens Shading Correction Calibration Dark	lens ShadingCorrectionCalibrationDark	Perform a dark calibration for lens shading correction. This is done before the bright calibration. This calibration requires a dark acquisition (as little light on the sensor as possible).	1.00 Expert DFNC

Lens Shading Correction Calibration Bright	Iens ShadingCorrectionCalibrationBright	Perform a bright calibration for lens shading correction. This is done after the dark calibration. This calibration requires a bright featureless acquisition that is not saturated. (70% illumination is recommended).	1.00 Expert DFNC
Save Calibration	Iens ShadingCorrectionCalibrationSave	Save the calibration results of the lens ShadingCorrectionCalibrationBright and/or lens ShadingCorrectionCalibrationDark operations to the active set.	1.00 Expert DFNC
Reset Coefficients	Iens ShadingResetCoefficients	Reset lens shading coefficients to pass- through.	1.00 Expert DFNC
Lens Shading Correction Algorithm Buffer Format	lens ShadingCorrectionAlgorithmBufferFormat		1.00 Invisible DFNC
Mono8	Mono8		
Lens Shading Correction Algorithm Buffer Width	Iens ShadingCorrectionAlgorithmBufferWidth		1.00 Invisible DFNC
Lens Shading Algorithm Buffer Height	Iens ShadingCorrectionAlgorithmBufferHeight	VO '-7' 32	1.00 Invisible DFNC
Lens Shading Algorithm Gain Max	Iens ShadingCorrectionAlgorithmGainMax	**	1.00 Invisible DFNC
Lens Shading Algorithm Gain Min	Iens ShadingCorrectionAlgorithmGainMin	-4/2	1.00 Invisible DFNC
Lens Shading Algorithm Gain Divisor	Iens ShadingCorrectionAlgorithmGainDivisor	76/6	1.00 Invisible DFNC
Lens Shading Algorithm Gain Base	Iens ShadingCorrectionAlgorithmGainBase	2007	1.00 Invisible DFNC
Lens Shading Algorithm Offset Max	Iens ShadingCorrectionAlgorithmOffsetMax	5	1.00 Invisible DFNC
Lens Shading Algorithm Offset Min	Iens ShadingCorrectionAlgorithmOffsetMin		1.00 Invisible DFNC
Lens Shading Correction Algorithm Offset Factor	Iens ShadingCorrectionAlgorithmOffsetFactor		1.00 Invisible DFNC

Defective Pixel Replacement

The Pixel Replacement algorithm is based on a predefined bad pixel map (as an XML file), either supplied by the factory (file loaded as "Factory Map") or generated by the user (file uploaded as "User Map 1"). The number of bad pixel entries is limited and varies dependent on the Nano model. The following XML code sample forms the template for the user to build bad pixel maps for any of their Nano cameras.

Note: Identifying bad pixels is left to the user's discretion, but Teledyne DALSA technical support can provide guidance.

Example User Defective Pixel Map XML File

The following example shows the required components of the defective pixel map file. Each bad pixel position (relative to the image origin which is the upper left corner), must be identified by the XML statement:

```
<DefectivePixel OffsetX="number" OffsetY="number"/>
```

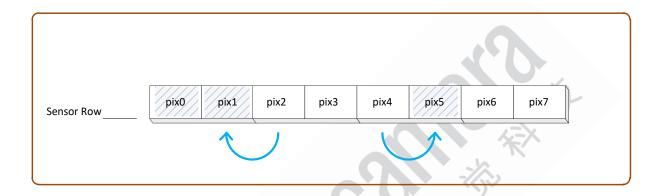
The pixel format (whether 8, 10, 12-bit) is handled transparently requiring no special consideration by the user.

This example XML listing has four "bad" pixels identified (maximum number of entries is model dependent). The various algorithm descriptions define the rules used by the Nano firmware to replace an identified bad pixel.

```
<?xml version="1.0" encoding="UTF-8" ?>
<!-- Example User Defective Pixel Map -->
<!-- maximum 2048 coordinates based on the camera model specific specification -->
<!-- filename: NanoExampleBadPixels.xml -->

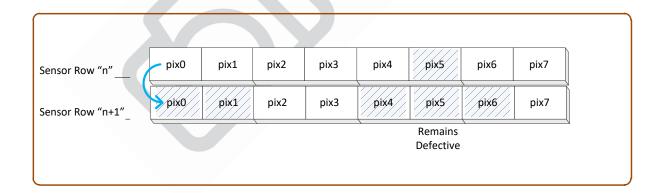
<Coordinates>

<DefectivePixel OffsetX="100" OffsetY="0"/>
<DefectivePixel OffsetX="28" OffsetY="345"/>
<DefectivePixel OffsetX="468" OffsetY="50"/>
<DefectivePixel OffsetX="800" OffsetY="600"/>
</Coordinates>
```


A sample editable defective pixel map replacement file will be available to download with Nano firmware files.

Monochrome Defective Pixel Replacement Algorithm Description

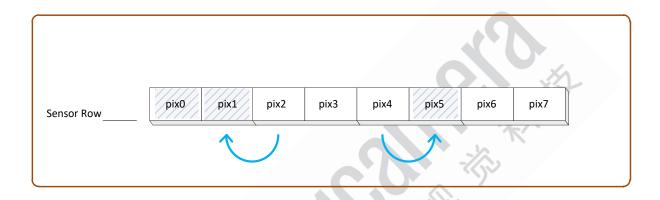
The replacement algorithm follows a few basic rules as defined below, which in general provides satisfactory results.


Single bad pixel in a sensor line with a good adjacent pixel

- A defective pixel is replaced by the following good pixel if previous pixel is bad or not existent.
- Or a defective pixel is replaced by the previous good pixel.

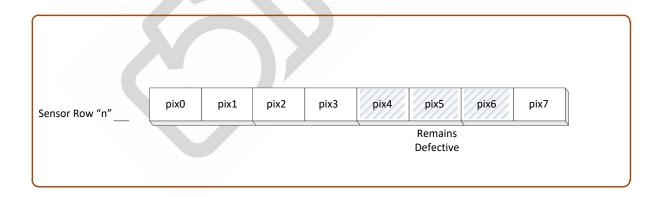
Bad pixel in a sensor line with bad adjacent pixels

- Replace bad pixel with the corresponding pixel of the previous line.
- Do nothing when the neighboring pixels are also bad.



Color Defective Pixel Replacement Algorithm Description

The replacement algorithm rules for Bayer a color sensor is similar to the monochrome rules with the exception that replacement pixels of the same color as the bad are used. The two replacement cases below describe general color pixel replacements.


Single bad pixel in a sensor line with a good adjacent pixel

- A defective pixel is replaced by the following good pixel if previous pixel is bad or not existent.
- Or a defective pixel is replaced by the previous good pixel.

Bad pixel in a sensor line with bad adjacent pixels

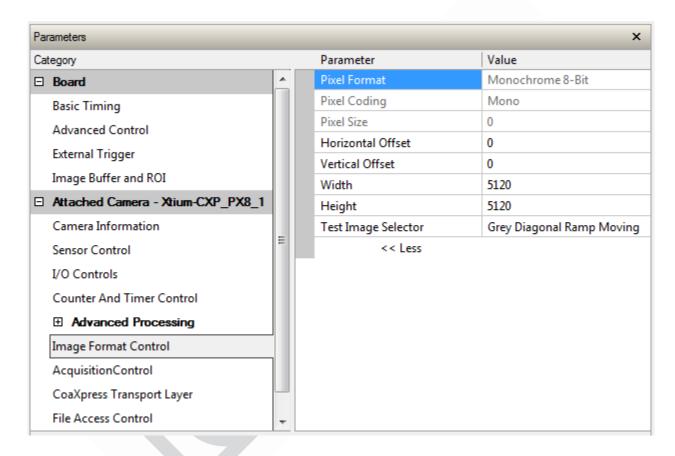

Do nothing when the neighboring pixels are also bad.

Image Format Control Category

The Nano-CXP Image Format controls, as shown by CamExpert, groups parameters used to configure camera pixel format, image cropping, etc.

Parameters in gray are read only, either always or due to another parameter being disabled. Parameters in black are user set in CamExpert or programmable via an imaging application. Features listed in the description table but tagged as Invisible are usually for Teledyne DALSA or third party software usage—not typically needed by end user applications.

Image Format Control Feature Description

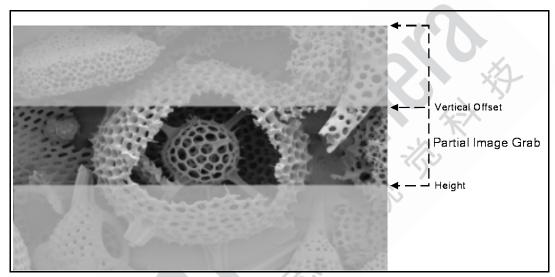
The following table describes these features along with their view attribute and device version. For each feature the device version may differ for each camera sensor available. Such differences will be clearly indicated for any applicable feature.

A Revision Version number represents the camera software firmware revision. As Genie Nano capabilities evolve the version will increase, therefore identifying the supported function package. New features for a major device version release will be indicated by green text for easy identification. The description column will indicate which feature is a member of the DALSA Features Naming Convention (denoted by DFNC), versus the GenICam Standard Features Naming Convention (SFNC tag is not shown).

Display Name	Feature & Values	Description	Version & View
Pixel Format	PixelFormat	Format of the pixel provided by the device. Contains all format information as provided by PixelCoding, PixelSize, PixelColorFilter, combined in one single value.	1.00 Beginnery
Monochrome 8-Bit	Mono8	Mono8: Monochrome 8-Bit	
Monochrome 10-Bit	Mono10	Mono10: Monochrome 10-Bit	
Monochrome 12-Bit	Mono12	Mono12: Monochrome 12-Bit	
BayerGR 8-Bit	BayerGR8	Color camera: BayerGR8	
BayerRG 8-Bit	BayerRG8	Color camera: BayerRG8t	
BayerGB 8-Bit	BayerGB8	Color camera: BayerGB8	
BayerBG 8-Bit	BayerBG8	Color camera: BayerBG8	
BayerGR 10-Bit	BayerGR10	Color camera: BayerGR10	
BayerRG 10-Bit	BayerRG10	Color camera: BayerRG10	
BayerGB 10-Bit	BayerGB10	Color camera: BayerGB10	
BayerBG 10-Bit	BayerBG10	Color camera: BayerBG10	
BayerGR 12-Bit	BayerGR12	Color camera: BayerGR12	
BayerRG 12-Bit	BayerRG12	Color camera: BayerRG12	
BayerGB 12-Bit	BayerGB12	Color camera: BayerGB12	
BayerBG 12-Bit	BayerBG12	Color camera: BayerBG12	
Pixel Coding	PixelCoding	Outputimage pixel coding format of the sensor.	1.00 Guru
Mono	Mono	Pixel is monochrome	
MonoSigned	MonoSigned	Pixel is monochrome and signed	
MonoPacked	MonoPacked	Pixel is monochrome and packed	
Raw Bayer	Raw	Pixel is raw Bayer	
Pixel Size	PixelSize	Total size in bits of an image pixel.	1.00 Guru
8 Bits/Pixel	Врр8	Bpp8: 8 bits per pixel	
10 Bits/Pixel	Врр10	Bpp10: 10 bits per pixel	
12 Bits/Pixel	Врр12	Bpp12: 12 bits per pixel	
Horizontal Offset	O ffs etX	Horizontal offset from the Sensor Origin to the Region Of Interest (in pixels).	1.00 Beginner
V ertical Offset	O ffs etY	Vertical offset from the Sensor Origin to the Region Of Interest (in Lines).	1.00 Beginner
Width	Width	Width of the I mage provided by the device (in pixels).	1.00 Beginner
Height	Height	Height of the I mage provided by the device Beginner	1.00 Beginner

Test Image Selector	TestImageSelector	Selects the type of test image generated by the camera.	1.00 Beginner
Off	Off	I mage is from the camera sensor.]
Grey Horizontal Ramp	GreyHorizontalRamp	I mage is filled horizontally with an image that goes from the darkest possible value to the brightest.	
Grey Vertical Ramp	GreyVerticalRamp	I mage is filled vertically with an image that goes from the darkest possible value to the brightest.	
Grey Diagonal Ramp Moving	GreyDiagonalRampMoving	I mage is filled horizontally with an image that goes from the darkest pos sible value to the brightest by 1 Dn increment per pixel and that moves horizontally.	
Pixel Color Filter	PixelColorFilter	Indicates the type of color filter applied to the image.	1.00 Invisible
None	None	No filter applied	
Bayer GR	BayerGR	For BayerGR, the 2x2 mos aic alignment is GR/BG.	
Bayer RG	BayerRG	For BayerRG, the 2x2 mos aic alignment is RG/GB.	
Bayer GB	BayerGB	For BayerGB, the 2x2 mos aic alignment is GB/RG.	
Bayer BG	BayerBG	For BayerBG, the 2x2 mos aic alignment is BG/GR.	
Width Max	WidthMax	The maximum image width is the dimension calculated after horizontal binning, decimation or any other function changing the horizontal dimension of the image.	1.00 Invisible
Height Max	HeightMax	The maximum image height is the dimension calculated after vertical binning, decimation or any other function changing the vertical dimension of the image.	1.00 Invisible

Width and Height Features for Partial Scan Control


Width and Height controls along with their respective offsets, allow the Nano-CXP to grab a region of interest (ROI) within the full image frame. Besides eliminating post acquisition image cropping done by software in the host computer, a windowed ROI grab reduces the bandwidth required since fewer pixels are transmitted.

Important: Any reduction of the camera's acquisition area from its maximum must be matched by the same reduction in the frame grabber's buffer dimensions. The Teledyne DALSA CXP frame grabber will generate "Buffer Incomplete" errors when the buffer dimensions do not match the Nano CXP cropped acquisition.

Vertical Cropping (Partial Scan)

The Height and Vertical Offset features, used for vertical cropping, reduce the number of video lines grabbed for a frame. By not scanning the full height of the sensor, the maximum possible acquisition frame rate is proportionately increased, up to the model maximum.

The following figure is an example of a partial scan acquisition using both Height and Vertical Offset controls. The Vertical Offset feature defines at what line number from the sensor origin to acquire the image. The Height feature defines the number of lines to acquire (to a maximum of the remaining frame height). Note that only the partial scan image (ROI) is transmitted to the host computer.

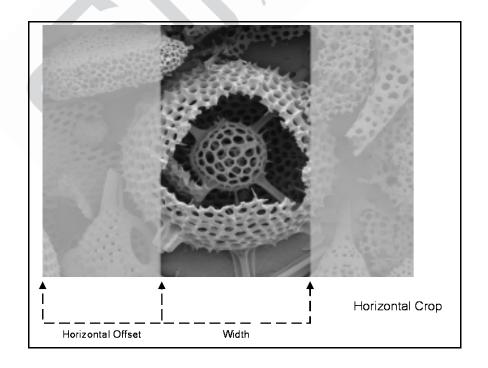
Partial Scan Illustration

Maximum Frame Rate Examples (Nano-CXP M/C 5100)

Note: Fast Readout Mode will have low DN Fixed Pattern column artifacts as described here OnSemi Sensor Fast Readout Mode.

Vertical Lines Acquired (inc=16)	Standard Readout Mode (fps)	Fast Readout Mode (fps)
5120	46.89	80.15
3840	62.45	106.6
2560	93.45	159.3
1280	185.5	315.2
640	365.8	616.5
320	711.7	1182
160	1349	2178
80	2444	3773
48	3623	5347
32	4761	6711
16	6993	9090

Maximum Frame Rate Examples (Nano-CXP M/C 4090)


Note: Fast Readout Mode will have low DN Fixed Pattern column artifacts as described here OnSemi Sensor Fast Readout Mode.

Vertical Lines Acquired (inc=16)	Standard Readout Mode (fps)	Fast Readout Mode (fps)
4096	65.58	122.4
3072	87.3	162.7
2048	130.5	242.6
1024	258.4	477
512	506	922
256	975	1733
128	1814	3086
64	3184	5050
32	5128	7462
16	7352	9708

Horizontal Cropping (Partial Scan)

Genie Nano supports cropping the acquisition horizontally by grabbing fewer pixels on each horizontal line. Horizontal offset defines the start of the acquired video line while horizontal width defines the number of pixels per line.

There are two Horizontal Control features. These features, horizontal offset (OffsetX) and width (Width) have three associated factors — their minimum value, maximum value and the increment (step size) value.

Internal Test Pattern Generator

The Genie Nano camera includes a number of internal test patterns which easily confirm camera installations, without the need for a camera lens or proper lighting.

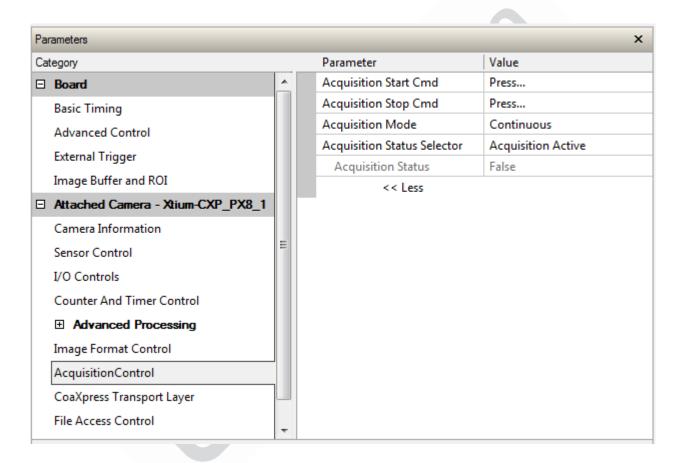
Use CamExpert to easily enable and select the any of the Nano test patterns from the drop menu while the camera is not in acquisition mode. Select live grab to see the pattern output.

Note that internal test patterns are generated by the camera FPGA where the patterns are inserted immediately after the sensor output in the processing chain and are the same maximum bit depth as the sensor. The patterns are identical for monochrome or color camera models and subject to processing operations.

Note: Processing such as Flat Field corrections and Shading corrections are not disabled automatically. Therefore the test pattern ramps will seem to be lacking various gray levels unless all processing features are off.

The Nano Test Patterns are:

Grey Vertical ramp: Image is filled vertically with an image that goes from the darkest possible value to the brightest.


Grey Diagonal Ramp Moving: combination of the 2 previous schemes, but first pixel in image is incremented by 1 between successive frames. This is a good pattern to indicate motion when doing a continuous grab.

Acquisition Control Category

The Acquisition and Transfer controls as shown by CamExpert, has parameters used to configure the optional acquisition modes of the device. Parameters in gray are read only, either always or due to another parameter being disabled. Parameters in black are user set in CamExpert or programmable via an imaging application.

Features listed in the description table but tagged as Invisible are usually for Teledyne DALSA or third party software usage—not typically needed by end user applications.

Acquisition Control Feature Descriptions

The following table describes these parameters along with their view attribute and minimum firmware version required. Additionally the Device Version column will indicate which parameter is a member of the DALSA Features Naming Convention (denoted by DFNC), versus the GenICam Standard Features Naming Convention (SFNC tag is not shown).

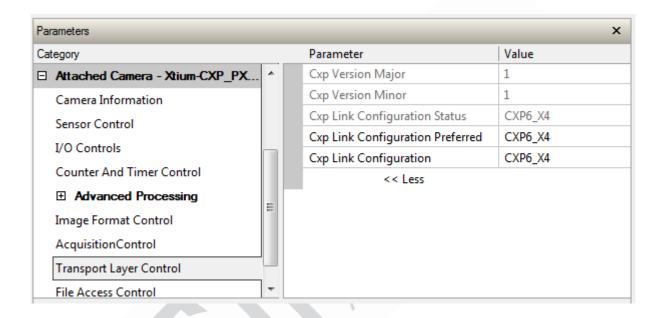
As Genie Nano capabilities evolve the device version will increase, therefore identifying the supported function package. New features for a major device version release will be indicated by green text for easy identification.

Display Name	Feature & Values	Description	Device Version & View	
Acquisition Status Selector	A c quisitionStatusSelector	Selects the internal acquisition signal to read using AcquisitionStatus.	1.00 Expert	
Acquisition Active	AcquisitionActive	Device is currently doing an acquisition of one or many frames.		
Acquisition Trigger Wait	AcquisitionTriggerWait	Device is currently waiting for a trigger to start the acquisition.		
Acquisition Status	A c quisitionStatus	Reads the state of the internal acquisitions ignal selected using the Acquisition Status Selector feature.	1.00 Expert	
Acquisition Mode	A c quisiti onMode	Set the acquisition mode of the device. It defines the number of frames to capture during an acquisition and the way the acquisitions tops.	1.00 Beginner	
Continuous	Continuous	Frames are captured continuously with AcquisitionStart until stopped with the AcquisitionStop command.		
Acquisition Start Cmd	A c quisitionStart	Start image capture using the currently selected acquisition mode. The number of frames captured is specified by AcquisitionMode feature.	1.00 Beginner	
Acquisition Stop Cmd	A c quisition Stop	Stops the Acquisition of the device at the end of the current frame unless the triggerFrameCount feature is greater than 1.	1.00 Beginner	
Device Registers Streaming Start	DeviceRegistersStreamingStart	Announces the start of registers streaming without immediate checking for consistency.	1.00 Invisible	
Device Registers Streaming End	DeviceRegistersStreamingEnd	A nnounces end of registers s treaming and performs validation for registers consistency before activating them.	1.00 Invisible	
Device Feature Streaming Start	DeviceFeaturePersistenceStart	A nnounces the start of feature streaming without immediate checking for consistency.	1.00 Invisible	
Device Feature Streaming End	DeviceFeaturePersistenceEnd	A nnounces end of features treaming and performs validation for feature consistency before activating them.	1.00 Invisible	
Register Check	DeviceRegistersCheck	Performs an explicit registers et validation for consistency.	1.00 Invisible	
Registers Valid	DeviceRegistersValid	States if the current register set is valid and consistent.	1.00 Invisible	

Acquisition Buffering

All acquisitions are internally buffered and transferred as fast as possible to the host system. This internal buffer allows uninterrupted acquisitions no matter of any transfer delays that might occur. Only when the internal acquisition buffer is consumed would an Image Lost Event be generated.

Features that cannot be changed during a Transfer


The following features cannot be changed during an acquisition or when a transfer is connected.

Feature Group	Features Locked During a Sapera Transfer
CAMERA INFORMATION	UserSetLoad, deviceBIST, DeviceReset
SENSOR CONTROL	AcquisitionFrameRate, ExposureMode, exposureAlignment GainSelector, sensorSpecificSaturationControl
I/O CONTROLS	TriggerSelector, TriggerMode, triggerFrameCount TriggerSource, TriggerDelay, TriggerOverlap-EndOfExposure
Advanced Processing	flatfieldCorrectionMode, flatfieldCorrectionAlgorithm flatfieldCorrectionType, flatfieldCorrectionCurrentActiveSet flatfieldCorrectionCalibrationDark, flatfieldCorrectionCalibrationBright flatfieldCalibrationTarget, flatfieldCorrectionCalibrationResetCoefficients defectivePixelReplacementMode, defectivePixelReplacementMapCurrentActiveSet defectiveColumnReplacementOption, noiseReduction lensShadingCorrectionMode, lensShadingCorrectionCurrentActiveSet lensShadingCorrectionCalibrationSampleSize, lensShadingCorrectionCalibrationBright, lensShadingCorrectionCalibrationDark lensShadingResetCoefficients
COUNTER AND TIMER CONTROL	NA NA
IMAGE FORMAT CONTROL	PixelFormat OffsetX (except within the Cycling Mode) OffsetY (except within the Cycling Mode) Binning (except within the Cycling Mode) Width, Height Multi-ROI functions, TestImageSelector
ACQUISITION CONTROL	Device Registers Streaming Start Device Registers Streaming End
FILE ACCESS CORNTOL	NA

Transport Layer Control

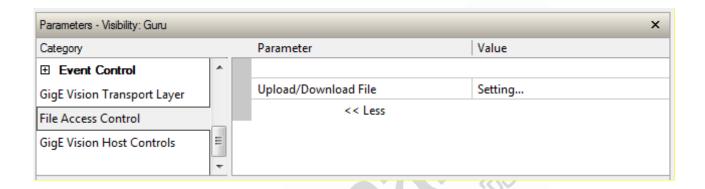
The Nano-CXP Transport Layer controls, as shown by CamExpert, groups parameters used to manage the CXP data interface.

Parameters in gray are read only, either always or due to another parameter being disabled. Parameters in black are user set in CamExpert or programmable via an imaging application. Features listed in the description table but tagged as *Invisible* are usually for Teledyne DALSA or third party software usage—not typically needed by end user applications.

CoaXpress Transport Layer Feature Description

The following table describes these features along with their view attribute and device version. For each feature the device version may differ for each camera sensor available. Such differences will be clearly indicated for any applicable feature.

A Revision Version number represents the camera software firmware revision. As Genie Nano capabilities evolve the version will increase, therefore identifying the supported function package. New features for a major device version release will be indicated by green text for easy identification. The description column will indicate which feature is a member of the DALSA Features Naming Convention (denoted by DFNC), versus the GenICam Standard Features Naming Convention (SFNC tag is not shown).


Display Name	Feature & Values	Description	Version & View
C XP Major Version	C x pV ersionMajor	This field represents the major version of the specification.	1.00 Beginner
C XP Minor Version	C x pV ersionMinor	This field represents the minor version of the specification.	1.00 Beginner
Cxp Link Configuration Status	C xpLinkConfigurationStatus	CXP Link Configuration Status.	1.00 Beginner
None	None		
Pending	Pending		
C x p6_X4	C xp6_X4	'RI'	
Cxp Link Configuration Preferred	C xpLinkConfigurationPreferred	C XP Link Configuration Preferred.	1.00 Expert
C x p6_X4	C xp6_X4	<i>y</i> , <i>y</i> ,	
C xp Link Configuration	CxpLinkConfiguration	C XP Link Configuration	1.00 Beginner
C x p6_X4	C xp6_X4		
0 1/0 01 1 1		71	
Coa XPress Standard	CxpStandard	This represents the magic Number of CoaXPress.	1.00 Invisible
XML Manifest Size	C x p X m Manifest Size	This provides the number of Xml Manifests available.	1.00 Invisible
XML Manifest Selector	C xpXmlManifestSelector	Select the CXP XML Manifest to use.	1.00 Invisible
XML Major Version	C x p X m I V ersion Major	The major version of the XML file.	1.00 Invisible
XML Minor Version	C xpXmlVersionMinor	The minor version of the XML file.	1.00 Invisible
XML SubMinor Version	C x p XmlV ersi on SubMinor	The subminor version of the XML file.	1.00 Invisible
XML Schema Major Version	C x p Xml Schema Version Major	The major version of the schema used by the XML file.	1.00 Invisible
XML Schema Minor Version	C x p Xml Schema Version Minor	The minor version of the schema used by the XML file.	1.00 Invisible
XML Schema Sub Minor Version	C xpXmlSchemaVersionSubMinor	The sub minor version of the schema used by the XML file.	1.00 Invisible
URL String Start Address	CxpXmlUrlAddress	The address of the start of the URL string.	1.00 Invisible
IIDC Register Start Address	C x plidcPointer	Start address of the IIDC register s pace (value=0 if IIDC is not supported).	1.00 Invisible
Device Link Reset	C xpLinkReset	Execute a Device Link Reset (ConnectionReset) by writing 1 to this feature.	1.00 Invisible

Device Link I D	C xpDeviceLinkID	Provides the link ID of the current CXP link where "0" indicates the master connection.	1.00 Invisible
Master Host Link ID	CxpMasterHostLinkID	Host Link ID of the Host link connected to the Device Master connection.	1.00 Invisible
C ontrol Packet Size	C x pC ontrolPacketDataSize	Feature to read the control packet datasize in bytes.	1.00 Invisible
StreamPacket Data Size	C x pStreamPacket DataSize	Sets the maximum stream packet size the Host can accept.	1.00 Invisible
C XP T est M ode	C x pTestMode	Starts or stops the test mode.	1.00 Invisible
Select Test Error Counter	C x pTestErrorCountSelector	Selects the test error count error register.	1.00 Invisible
C XP Test Error Count	CxpTestErrorCount	Read test error counter.	1.00 Invisible
Pixel Size	cIPixelSize	Total size in bits of an image pixel.	1.00 Invisible
8 Bits/Pixel	Врр8	Bpp8: 8 bits per pixel	
10 Bits/Pixel	Врр10	Bpp10: 8 bits per pixel	
12 Bits/Pixel	Bpp12	Bpp12: 8 bits per pixel	

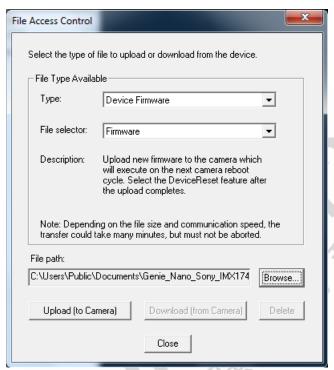
File Access Control Category

The File Access control in CamExpert allows the user to quickly upload various data files to the connected Genie Nano. The supported data files are for firmware updates and other types dependent on the Nano model.

Features listed in the description table but tagged as *Invisible* are usually for Teledyne DALSA or third party software usage—not typically needed by end user applications.

File Access Control Feature Descriptions

The Device Version number represents the camera firmware release number. New features for a major device version release will be indicated by green text for easy identification.


Display Name	Feature & Values	Description	Device Version & View
File Selector	File Selector	Selects the file to access. The file types which are accessible are device-dependent.	1.00 Guru
Firmware	Firmware1	Upload new firmware to the camera which will execute on the next camera reboot cycle. Select the DeviceRes et feature after the upload completes.	
Factory Defective Pixel Map	BadPixelCoordinate0	Select the Factory Defective Pixel Map.	
Us er Defective Pixel Map	BadPixelCoordinate1	Select the User Defective Pixel Map XML file as defined in Advanced Processing.	
Factory Flat Line coefficients 1	FlatFieldCoefficients01	Select factory Flat Line coefficients 1. These are the factory values used when the camera fastReadoutMode is Off and sensor Gain is 1.0.	
Factory Flat Line coefficients 2	FlatFieldCoefficients02	Select factory Flat Line coefficients 2. These are the factory values used when the camera fastReadoutMode is Off and sensor Gain is 1.26.	
Factory Flat Line coefficients 3	FlatFieldCoefficients03	Select factory Flat Line coefficients 3. These are the factory values used when the camera fastReadoutMode is Offand sensor Gain is 1.87.	
Factory Flat Line coefficients 4	FlatFieldCoefficients04	Select factory Flat Line coefficients 4. These are the factory values used when the camera fast Readout Mode is Off and sensor Gain is 3.17.	
Factory Flat Line coefficients 5	FlatFieldCoefficients05	Select factory Flat Line coefficients 5. These are the factory values used when the camera fastReadoutMode is Active and sensor Gain is 1.0.	

Factory Flat Line coefficients 6	FlatFieldCoefficients06	Select factory Flat Line coefficients 6. These are the factory values used when the camera fast Readout Mode is Active and sensor Gain is 1.26.	
Factory Flat Line coefficients 7	FlatFieldCoefficients07	Select factory Flat Line coefficients 7. These are the factory values used when the camera fast Readout Mode is Active and sensor Gain is 1.87.	
Factory Flat Line coefficients 8	FlatFieldCoefficients08	Select factory Flat Line coefficients 8. These are the factory values used when the camera fastReadoutMode is Active and sensor Gain is 3.17.	
Us er Flat Line coefficients 1	FlatFieldCoefficients1	Select us er Flat Line coefficients 1. These are the coefficient values used when the sensor analog Gain is 1.0.	
Us er Flat Line coefficients 2	FlatFieldCoefficients2	Select us er Flat Line coefficients 2. These are the coefficient values used when the sensor Gain is 1.26.	
Us er Flat Line coefficients 3	FlatFieldCoefficients3	Select us er Flat Line coefficients 3. These are the coefficient values used when the sensor Gain is 1.87.	
Us er Flat Line coefficients 4	FlatFieldCoefficients4	Select us er Flat Line coefficients 4. These are the coefficient values used when the sensor Gain is 3.17.	
Lens Shading Correction 1	Lens Shading Correction 1	Lens Shading coefficients s et 1	
Lens Shading Correction 2	Lens Shading Correction 2	Lens Shading coefficients s et 2	
Us er Defined Saved Image	us erDefinedSavedI mage	Upload and download an image in the camera.	
Open Source Licens €	SoftwareLicenses	Open Source Software Licenses.	
File Operation Selector	FileOperationSelector	Selects the target operation for the selected file in the device. This operation is executed when the File Operation Execute feature is called.	1.00 Guru
Open	Open	Select the Open operation – executed by FileOperationExecute.	
Clos e	Clos e	Select the Clos e operation – executed by FileOperationExecute	
Read	Read	Select the Read operation – executed by FileOperationExecute.	
Write	Write	Select the Write operation – executed by FileOperationExecute.	
Delete	Delete	Select the Delete operation – executed by FileOperationExecute.	
File Operation Execute	FileOperationExecute	Executes the operations elected by File Operation Selector on the selected file.	1.00 Guru
File Open Mode	FileOpenMode	Selects the access mode used to open a file on the device.	1.00 Guru
Read	Read	Select READ only open mode	
Write	Write	Select WRITE only open mode	
File Access Buffer	FileAccessBuffer	Defines the intermediate access buffer that allows the exchange of data between the device file storage and the application.	1.00 Guru
File Access Offset	FileAccessOffset	C ontrols the mapping offset between the devices file s torage and the file access buffer.	1.00 Guru
File Access Length	FileAccessLength	C ontrols the mapping length between the device file storage and the file access buffer.	1.00 Guru
File Operation Status	FileOperationStatus	Displays the file operation executions tatus.	1.00
Success	Success	The last file operation has completed successfully.	Guru
Failure	Failure	The last file operation has completed unsuccessfully for an unknown reason.	
File Unavailable	FileUnavailable	The last file operation has completed unsuccessfully because the file is currently unavailable.	

File I nvalid	Filel nvalid	The las t file operation has completed uns uccessfully because the s elected file in not pres ent in this camera model.	
File Operation Result	FileOperationResult	Displays the file operation result. For Read or Write operations, the number of successfully read/written bytes is returned.	1.00 Guru
File Size	FileSize	Represents the size of the selected file in bytes.	1.00 Guru
Device User Buffer	deviceUserBuffer	Unallocated memory available to the user for data storage.	1.00 DFNC Invisible
FTP File Access	ftpFileAccessSupported	Shows whether File Access is supported over FTP.	1.00 DFNC Invisible
User Defined Saved I mage Max Size	us er Defined Saved I mage Max Size	Maximum size of the user Defined Saved I mage in the flash memory.	1.00 DFNC Invisible
Save Last I mage to Flash	saveLastImageToFlash	C ommand that saves the last acquired image to camera flash memory. Use the file transfer feature to read the image from camera.	1.00 DFNC Invisible

Updating Firmware via File Access in CamExpert

• Click on the "Setting..." button to show the file selection menu.

- From the **File Type** drop menu, select the file **Type** that will be uploaded to the Genie Nano. This CamExpert tool allows quick firmware changes or updates, when available for your Genie Nano model.
- From the **File Selector** drop menu, select the Genie Nano memory location for the uploaded data. This menu presents only the applicable data locations for the selected file type.
- Click the Browse button to open a typical Windows Explorer window.
- Select the specific file from the system drive or from a network location.
- Click the Upload button to execute the file transfer to the Genie Nano.
- Reset the Nano when prompted.
- Important: File upload rates are fixed (as per the CXP standard) at 20Mbits/s. As an example a firmware file upload will take about 2½ minutes.

Overview of the deviceUserBuffer Feature

The feature deviceUserBuffer allows the machine vision system supplier access to 4 kB of reserved flash memory within the Genie Nano. This memory is available to store any data required, such as licensing codes, system configuration codes, etc. as per the needs of the system supplier. No Nano firmware operation will overwrite this memory block thus allowing and simplifying product tracking and control.

Implementing Trigger-to-Image Reliability

Overview

In a complex imaging systema lot can go wrong at all points – from initial acquisition, to camera processing, to data transmission. Teledyne DALSA provides features, events, and I/O signals that provide the system designer with the tools to qualify the system in real time.

The Teledyne DALSA website provides general information, FAQ, and White Paper downloads about the Trigger-to-Image Reliability (T2IR) framework in hardware and Sapera LT software SDK. http://www.teledynedalsa.com/imaging/knowledge-center/appnotes/t2ir/

T2IR with Genie Nano

Benefits for imaging systems include:

- Makes system more predictable
- Prevents many errors before they happen
- Manage system exceptions in controlled manner
- Provides system debugging and tracing
- Reduce downtime

Nano provides a number of features for system monitoring:

- Built-in Self-Test on power-up and reset after firmware change
- Internal Temperature Reporting
- In Camera Event Status Flags
- Invalid External Trigger
- Image Lost

Nano Features for T2IR Monitoring

The following table presents some of the Nano camera features a developer can use for T2IR monitoring. The output line signals would interface to other external devices.

Camera Status Monitoring		
Device Built-In Self Test	deviceBIST	
Device Built-In Self Test Status	deviceBISTStatus	
Device Temperature Selector	DeviceTemperatureSelector	
Device Version	DeviceVersion	
Firmware Version	DeviceFirmwareVersion	
Last firmware update failed	FirmwareUpdateFailure	
Manufacturer Part Number	deviceManufacturerPartNumber	
Manufacturer Info	De vice Manufacturer Info	
Acquisition and Triggers		
Valid Frame Trigger	ValidFrameTrigger	
Invalid Frame Trigger	InvalidFrameTrigger	

Technical Specifications

Both 2D and 3D design drawings are available for download from the Teledyne DALSA web site [http://www.teledynedalsa.com/genie-nano].

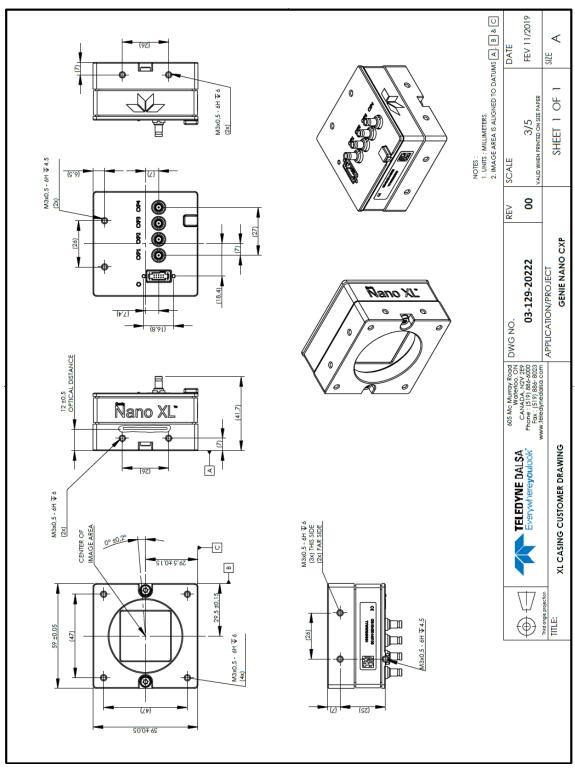
Notes on Genie Nano Identification and Mechanical

Identification Label

Genie Nano cameras have an identification label applied to the bottom side, with the following information:

Model Part Number Serial number 2D Barcode CE and FCC logo

Additional Mechanical Notes


For information on Nano lens requirements see Choosing a Lens with the Correct Image Circle. Each camera side has two mounting holes in identical locations, which provide good grounding capabilities. Overall height or width tolerance is ± 0.05 mm.

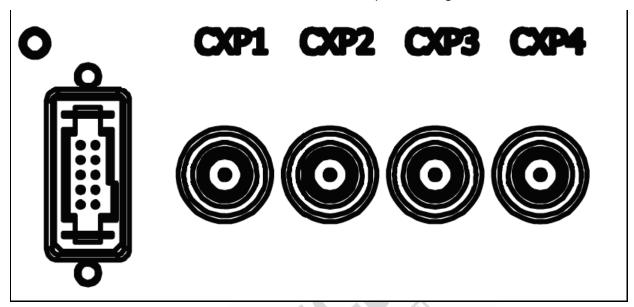
Temperature Management

Genie Nano cameras are designed to optimally transfer internal component heat to the outer metallic body. If the camera is free standing (i.e. not mounted) it will be hot to the touch.

Basic heat management is achieved by mounting the camera onto a metal structure via its mounting screw holes. Heat dissipation is improved by using thermal paste between the camera body (not the front plate) and the metal structure plus the addition of a heatsink structure.

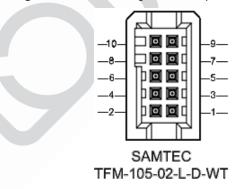
Mechanical Specifications with M42 Mount:

Note: Genie Nano-CXP with M42 Mount


Sensor Alignment Specification

The following figure specifies sensor alignment for Genie Nano where all specifications define the absolute maximum tolerance allowed for production cameras. Dimensions "x, y, z", are in microns and referenced to the Genie Nano mechanical body or the optical focal plane (for the z-axis dimension). Theta specifies the sensor rotation relative to the sensor's center and Nano mechanical.

X variance	+/- 250 microns	Sensor Alignment Reference
Y variance	+/- 250 microns	(+/-) theta variance
Z variance	+/- 300 microns	Z variance not shown
Theta variance	+/- 1 degree	(+/-) X variance


Connectors

CoaXPress: DIN 1.0/2.3 connector (CXP-6 maximum speed rating)

10-pin I/O Connector Details

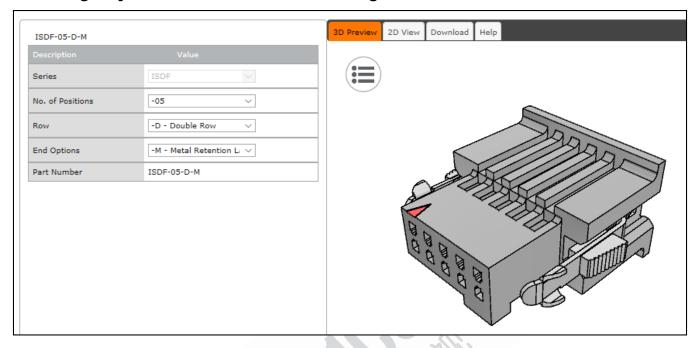
- An auxiliary DC power source can be connected to the 10-pin connector (SAMTEC TFM-105-02-L-D-WT) when not using Power over CoaXPress (PoCXP). Nano supports connecting cables with retention latches or screw locks. The following figure shows the pin number assignment.
- Note: Connect power via the I/O connector or PoCXP, but never both. Although Nano has protection, differences in ground levels may cause operational issues or electrical faults.

Teledyne DALSA makes available optional I/O cables as described in <u>Ruggedized Cable Accessories</u>. Contact Sales for availability and pricing.

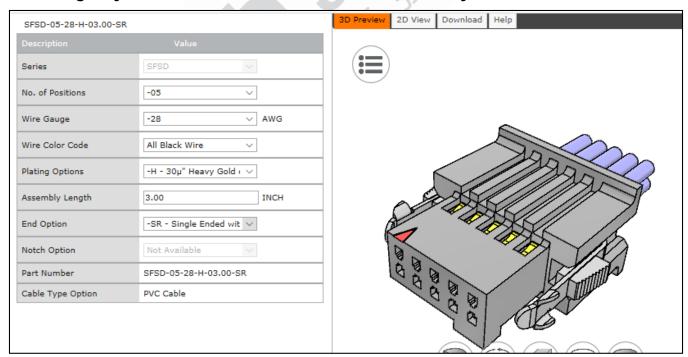
Pin Number	Genie Nano	Direction	Definition
1	PWR-GND	_	Camera Power Ground (common with chassis pin10)
2	PWR-VCC	_	Camera Power – DC +12 to +26 Volts
3 - 9	N/A	_	Reserved
10	Chassis	_	Camera Chassis (connected to CXP connector shell & pin-1)

Camera DC Power Characteristics

DC Operating Characteristics		
Input Voltage	+12 Volts minimum	
Input Power Consumption	@ +24 Volt Supply	12 Watts typical


Absolute Maximum DC Power Supply Range before Possible Device Failure	
Input Voltage Range	+26 Volt to -26 Volt DC

I/O Mating Connector Specifications & Sources


For users wishing to build their own custom I/O cabling, the following product information is provided to expedite your cable solutions. SAMTEC web information for the discrete connector and a cable assembly with retention clips follows the table.

MFG	Part #	Description	Data Sheet
Samtec	ISDF-05-D ISDF-05-D-M (see image below)	Discrete Connector (see example below)	https://www.samtec.com/products/isdf
Samtec	SFSD-05-[WG]-G-[AL]-DR-[E2O] WG: Wire Gauge AL: Assembled Length E2O: End 2 Option	Discrete Cable Assembly (see example below)	https://www.samtec.com/products/sfsd
ISDF-05-D-M	Connector Availability On-Line	X1-)	
North-Ameri	ica (specific country can be selected)	http://www.newark.com receptacle-10/dp/06R61	n/samtec/isdf-05-d-m/connector-housing- 84
Europe (spe	cific country can be selected)	http://uk.farnell.com/sa crimp-10way/dp/23085	nmtec/isdf-05-d-m/receptacle-1-27mm- 47?ost=ISDF-05-D-M
Asia-Pacific	(specific country can be selected)	http://sg.element14.cor crimp-10way/dp/23085	m/samtec/isdf-05-d-m/receptacle-1-27mm- 47?ost=ISDF-05-D-M
Important:	Samtec ISDF-05-D-S is not compatible	e with Genie Nano	

Samtec ISDF-05-D-M mating connector for customer built cables w∕retention clips ".050" Tiger Eye™ Discrete Wire Socket Housing"

Samtec connector-cable assembly SFSD-05-28-H-03.00-SR w/retention clips ".050" Tiger Eye™ Double Row Discrete Wire Cable Assembly, Socket"

EMC Declaration of Conformity

EMC DECLARATION OF CONFORMITY

We: Teledyne DALSA, a business unit of Teledyne Digital Imaging, Inc. 880 Rue McCaffrey St-Laurent, Quebec, Canada H4T 2C7

Declare under sole legal responsibility that the following products conform to the protection requirements of council directive 2014/30/EU on the approximation of the laws of member states relating to electromagnetic compatibility and are CE-marked accordingly:

Genie Nano-CXP M4090, C4090, M5100, C5100

The products to which this declaration relates are in conformity with the following relevant harmonized standards, the reference numbers of which have been published in the Official Journal of the European Communities:

EN55032 (2015)	Electromagnetic compatibility of multimedia equipment — Emission requirements	
EN55011 (2016)	Industrial, scientific and medical equipment — Radio-frequency disturbance	
with A1(2017)	characteristics — Limits and methods of measurement	
EN 61326-1 (2013)	Electrical equipment for measurement, control and laboratory use — EMC	
	requirements — Part 1: General requirements	
EN 55024 (2010)	Information technology equipment — Immunity characteristics — Limits and methods	
	of measurement	
EN 55035 (2017)	Electromagnetic compatibility of multimedia equipment – Immunity requirements	

Further declare under our sole legal responsibility that the product listed also conforms to the following international standards:

CFR 47	part 15 (2008), subpart B, for a class A product. Limits for digital devices
ICES-003	Information Technology Equipment (ITE) — Limits and Methods of Measurement
CISPR 11(2015) with	Industrial, scientific and medical equipment - Radio-frequency disturbance
A1 (2016)	characteristics - Limits and methods of measurement
CISPR 32 (2015)	Electromagnetic compatibility of multimedia equipment - Emission requirements
CISPR 35 (2016)	Electromagnetic compatibility of multimedia equipment - Immunity requirements

Note: this product is intended to be a component of a larger industrial system. It is not intended for use in a residential system.

Waterloo, Canada 2019-16-24 Cheewee Tng, P. Eng
Location Date Director, Quality Assurance

THIS IS AN UNCONTROLLED COPY OF A CONTROLLED DOCUMENT PRINTED 10/22/2019 10:10 AM*

The information contained herein is proprietary to TELEDYNE DALSA and is to be used solely for the purpose for which it is supplied.
It shall not be disclosed in whole or in part, to any other party, without the express permission in writing by TELEDYNE DALSA. In addition, as of the last revision date, the information contained in this document is not subject to Export Control in Canada

EU Declaration of Conformity

EU DECLARATION OF CONFORMITY

Declaration Number: NE 13S 217983

We, Teledyne e2v

Rue de Rochepleine

BP 123 38521 Saint-Egrève Cedex

France

Declare the products

Product Family: CAMERA GENIE NANOCXP

Model Identification: G3-Xx30-xxxxx
Commercial brand: Teledyne-Dalsa

Are in conformity with the requirements of the following directives:

- Electromagnetic Compatibility Directive 2014/30/EU,
- RoHS Directive 2011/65/EU (Use limitation of some hazardous substances in electrical and electronic devices), included annex II modified according to derivate directive 2015/863.

Harmonized norms applicable

Electromagnetic Compatibility: EN55032: ed. 2012 + AC:2013, A class

EN55024: ed. 2010, A class

RoHS: EN 50581, ed. 2012

And carry the CE marking accordingly.

Saint-Egrève, France, on June 6th, 2019

Benoît TARD, Responsible for product quality Christophe Couillez Director of Quality

Copyright © e2v semiconductors.

Teledyne e2v ◆ Avenue de Rochepleine◆ BP 123 ◆ 38521 Saint Egreve Cedex ◆ France

Declaration of REACH

Declaration Number: NE 13S 217962

We, Teledyne-e2v

Rue de Rochepleine BP 123 38521 Saint-Egrève Cedex

France

Declare the product(s)

Product Family: CAMERA GENIE NANOCXP

Model Identification: G3-Xx30-xxxxx
Commercial brand: Teledyne-Dalsa

In conformance with the requirements of

The European Union's Registration, Evaluation and Authorization of Chemicals (REACH) regulation n°1907/2006 concerning Substances of Very High Concern (SVHC), which a list can be seen at the following website http://echa.europa.eu/web/guest/candidate-list-table

Applicable to: Electrical and Electronic Equipment (EEE)

These products contains one of the substance listed in the requirement

• Registration, Evaluation and Authorization of Chemicals (REACH*)

*The selection of SVHC is based on the list of substances given with CAS numbers contains substances listed by ECHA (1907/2006, Annex XIV, proposed 27th June 2018).

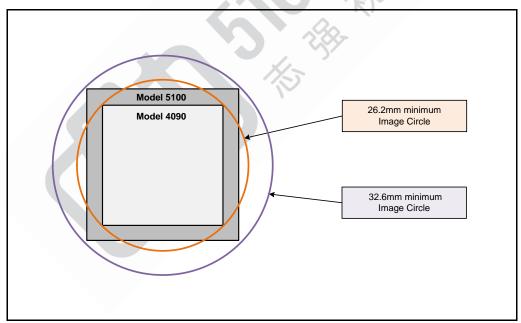
The substance is the diboron trioxide, at 0.235% weight/weight per article

Saint-Egrève, France, on May 29th, 2019

Benoît TARD, Responsible for product quality

Copyright © Teledyne-e2v.

Teledyne-e2v ◆ Avenue de Rochepleine• BP 123 ◆ 38521 Saint Egreve Cedex ◆ France


Additional Reference Information

Choosing a Lens with the Correct Image Circle

Each Nano model requires a lens with an image circle specification to fully illuminate the sensor. The following section graphically shows the minimum lens image circle for each Nano model family along with alternative lens types. Brief information on other lens parameters to consider follows those sections.

Lens Options for CXP Models with M42 Mounts

- The following figure shows the lens image circles relative to Genie Nano-CXP models using the OnSemi Python 25K and Python 16K sensors.
- These Nano-CXP models have a M42 screw mount where M42 lens or F-mount lens (via an adapter) need to have image circles exceeding the diameter of either of these larger sensors.

Additional Lens Parameters (application specific)

There are other lens parameters that are chosen to meet the needs of the vision application. These parameters are independent of the Nano model (assuming that the Lens Mount and Lens Sensor Size parameters are correct, as previously covered in this section). A vision system integrator or lens specialist should be consulted when choosing lenses since there is a trade-off between the best lenses and cost. An abridged list of lens parameters follows – all of which need to be matched to the application.

- **Focal Length**: Defines the focus point of light from infinity. This parameter is related to the Nano mount (C or CS mount).
- **Field of View**: A lens is designed to image objects at some limited distance range, at some positive or negative magnification. This defines the field of view.
- **F-Number (aperture)**: The lens aperture defines the amount of light that can pass. Lenses may have fixed or variable apertures. Additionally the lens aperture affects Depth of Field which defines the distance range which is in focus when the lens is focus at some specific distance.
- Image Resolution and Distortion: A general definition of image quality. A lens with poor resolution seems to never be in focus when used to image fine details.
- Aberrations (defect, chromatic, spherical): Aberrations are specific types of lens faults affecting resolution and distortion. Lens surface defects or glass faults distort all light or specific colors. Aberrations are typically more visible when imaging fine details.
- **Spatial Distortions**: Describes non-linear lens distortions across the field of view. Such distortion limits the accuracy of measurements made with that lens.

Optical Considerations

This section provides an overview to illumination, light sources, filters, lens modeling, and lens magnification. Each of these components contributes to the successful design of an imaging solution.

Illumination

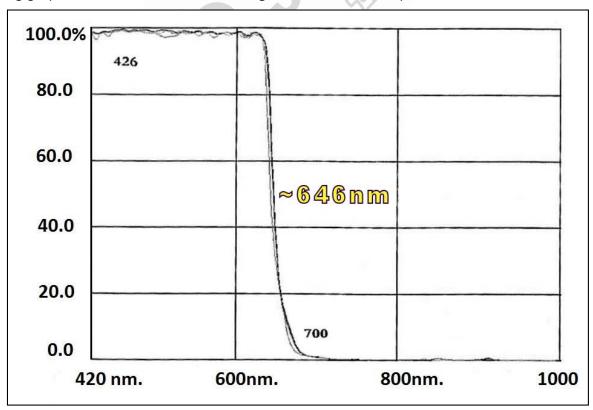
The amount and wavelengths of light required to capture useful images depend on the particular application. Factors include the nature, speed, and spectral characteristics of objects being imaged, exposure times, light source characteristics, environmental and acquisition system specifics, and more. The Teledyne DALSA Web site provides an introduction to this potentially complicated issue. Click on Knowledge Center and then select Application Notes and Technology Primers. Review the sections of interest.

It is often more important to consider exposure than illumination. The total amount of energy (which is related to the total number of photons reaching the sensor) is more important than the rate at which it arrives. For example, 5μ /cm² can be achieved by exposing 5mW/cm² for 1ms just the same as exposing an intensity of 5W/cm² for 1μ s.

Light Sources

Keep these guidelines in mind when selecting and setting up light source:

- LED light sources are relatively inexpensive, provide a uniform field, and longer life span compared to other light sources. However, they also require a camera with excellent sensitivity.
- Halogen light sources generally provide very little blue relative to infrared light (IR).
- Fiber-optic light distribution systems generally transmit very little blue relative to IR.
- Some light sources age such that over their life span they produce less light. This aging may not be uniform—a light source may produce progressively less light in some areas of the spectrum but not others.


IR Cut-off Filters for Color Cameras

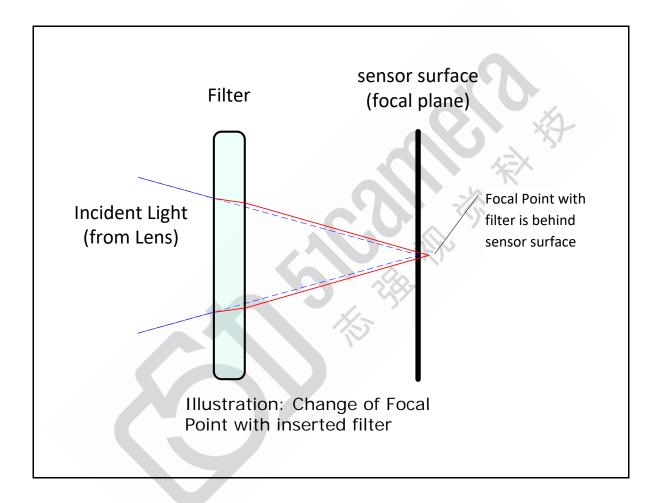
Genie Nano cameras are responsive to near infrared (IR) wavelengths. To prevent infrared from distorting the color balance of visible light acquisitions, use a "hot mirror" or IR cut-off filter that transmits visible wavelengths but does not transmit near infrared wavelengths and above.

Genie Nano color cameras have a spectral response that extends into near IR wavelengths (as defined for each sensor model in the sensor specification descriptions). Images captured will have washed out color if the sensor response is not limited to the visible light band.

Nano Models with Built-in IR Cut-off Filters

Choose Nano color cameras with built-in IR Cut-off Filters for a simple generalized solution. The following graphic shows these models having an IR filter with a specified cut-off of about 646nm.

Guidelines for Choosing IR Cut-off Filters


The following graphic, using a color sensor response spectrum, shows the transmission response of typical filters designed for CMOS sensor cameras. When selecting an IR cut-off filter, choose a near infrared blocking specification of $\sim\!650$ nm. Filters that block at 700nm or longer wavelengths, designed for CCD cameras, are not recommended for Genie Nano color cameras.

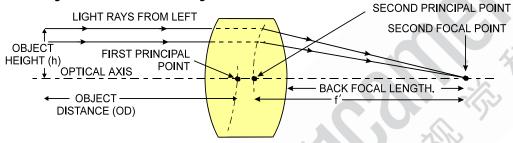
Back Focal Variance when using any Filter

Inserting a filter between a lens and sensor changes the back focal point of the lens used. A variable focus lens simply needs to be adjusted, but in the case of a fixed focus lens, the changed focal point needs correction.

The following simplified illustration describes this but omits any discussion of the Optics, Physics, and the math behind the refraction of light through glass filter media.

In this example when a glass filter is inserted between the lens and the camera sensor, the focal point is now about 1/3 of the filter thickness behind the sensor plane. Genie Nano filters are specified as 1mm thick.

Genie Nano models with factory installed filters automatically compensate for the focal point variance by having the sensor PCB mounted deeper within the camera body.


For Nano models normally shipped without filters, when a filter is installed a fixed focus lens requires a 1/3mm C-mount shim (spacer) added to move the lens focal point back to the sensor surface. Such shims are available from filter and lens suppliers. Alternatively use a variable focus lens and secure its focus ring after adjustment.

Lens Modeling

Any lens surrounded by air can be modeled for camera purposes using three primary points: the first and second principal points and the second focal point. The primary points for a lens should be available from the lens data sheet or from the lens manufacturer. Primed quantities denote characteristics of the image side of the lens. That is, h is the object height and h' is the image height.

The focal point is the point at which the image of an infinitely distant object is brought to focus. The effective focal length (f') is the distance from the second principal point to the second focal point. The back focal length (BFL) is the distance from the image side of the lens surface to the second focal point. The object distance (OD) is the distance from the first principal point to the object.

Primary Points in a Lens System

Magnification and Resolution

The magnification of a lens is the ratio of the image size to the object size:

$m = \frac{h'}{h}$	Where m is the magnification, h' is the image height (pixel size) and h is the object height (desired object resolution size).
\sim	Size).

By similar triangles, the magnification is alternatively given by:

$$m = \frac{f'}{OD}$$

These equations can be combined to give their most useful form:

	i e		
1	ı ,	This is the governing equation for many object and image plane parameters.	
j	h OD	plane parameters.	

Example: An acquisition system has a 512 x 512 element, $10\mu m$ pixel pitch area scan camera, a lens with an effective focal length of 45mm, and requires that $100\mu m$ in the object space correspond to each pixel in the image sensor. Using the preceding equation, the object distance must be 450mm (0.450m).

$$\frac{10\mu m}{100\mu m} = \frac{45mm}{OD} \qquad OD = 450mm$$

Sensor Handling Instructions

This section reviews proper procedures for handling, cleaning, or storing the Genie Nano camera. Specifically the Genie Nano sensor needs to be kept clean and away from static discharge to maintain design performance.

Electrostatic Discharge and the Sensor

Cameras sensors containing integrated electronics are susceptible to damage from electrostatic discharge (ESD).

Electrostatic charge introduced to the sensor window surface can induce charge buildup on the underside of the window that cannot be readily dissipated by the dry nitrogen gas in the sensor package cavity. With charge buildup, problems such as higher image lag or a highly non-uniform response may occur. The charge normally dissipates within 24 hours and the sensor returns to normal operation.

Important: Charge buildup will affect the camera's flat-field correction calibration. To avoid an errone ous calibration, ensure that you perform flat-field correction only after a charge buildup has dissipated over 24 hours.

Protecting Against Dust, Oil and Scratches

The sensor window is part of the optical path and should be handled like other optical components, with extreme care.

Dust can obscure pixels, producing dark patches on the sensor response. Dust is most visible when the illumination is collimated. The dark patches shift position as the angle of illumination changes. Dust is normally not visible when the sensor is positioned at the exit port of an integrating sphere, where the illumination is diffuse.

Dust can normally be removed by blowing the window surface using a compressed air blower, unless the dust particles are being held by an electrostatic charge, in which case either an ionized air blower or wet cleaning is necessary.

Oil is usually introduced during handling. Touching the surface of the window barehanded will leave oily residues. Using rubber finger cots and rubber gloves can prevent oil contamination. However, the friction between the rubber and the window may produce electrostatic charge that may damage the sensor.

Scratches can be caused by improper handling, cleaning or storage of the camera. When handling or storing the Nano camera without a lens, always install the C-mount protective cap. Scratches diffract incident illumination. When exposed to uniform illumination, a sensor with a scratched window will normally have brighter pixels adjacent to darker pixels. The location of these pixels changes with the angle of illumination.

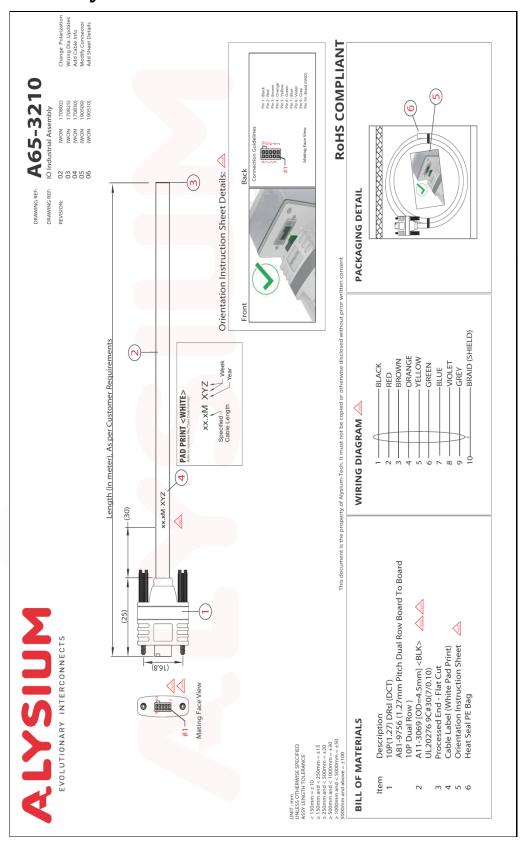
Cleaning the Sensor Window

Even with careful handling, the sensor window may need cleaning. The following steps describe various cleaning techniques to clean minor dust particles to accidental finger touches.

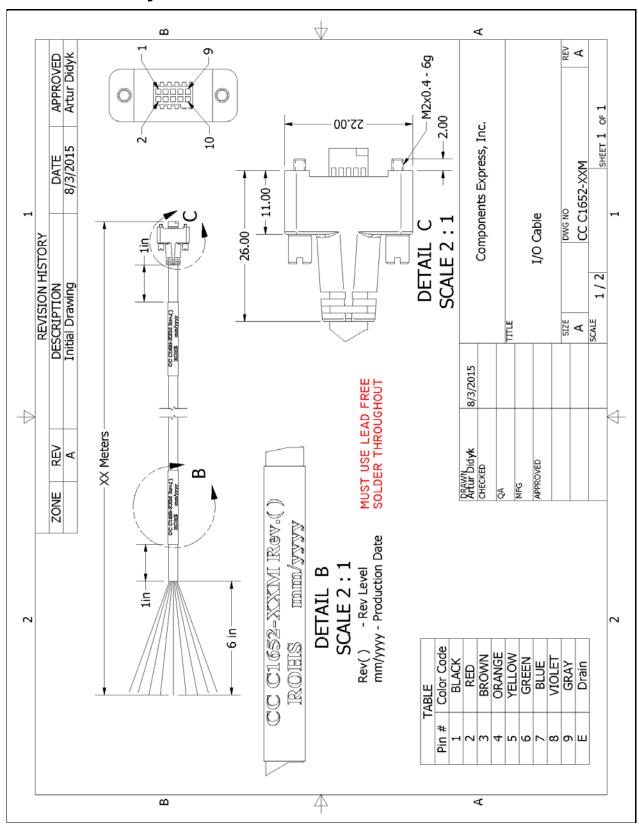
- Use compressed air to blow off loose particles. This step alone is usually sufficient to clean the
 sensor window. Avoid moving or shaking the compressed air container and use short bursts of
 air while moving the camera in the air stream. Agitating the container will cause condensation
 to form in the air stream. Long air bursts will chill the sensor window causing more
 condensation. Condensation, even when left to dry naturally, will deposit more particles on the
 sensor.
- When compressed air cannot clean the sensor, Teledyne DALSA recommends using lint-free ESD-safe cloth wipers that do not contain particles that can scratch the window. The Anticon Gold 9"x 9" wiper made by Milliken is both ESD safe and suitable for class 100 environments. Another ESD acceptable wiper is the TX4025 from Texwipe.
- An alternative to ESD-safe cloth wipers is Transplex swabs that have desirable ESD properties. There are several varieties available from Texwipe. Do not use regular cotton swabs, since these can introduce static charge to the window surface.
- Wipe the window carefully and slowly when using these products.

Ruggedized I/O Cable Accessories

Teledyne DALSA provides optional I/O cable assemblies for Genie Nano. Users wishing to build their I/O cabling by starting from available cable packages should consider these popular assemblies described below. Contact Sales for pricing and delivery.

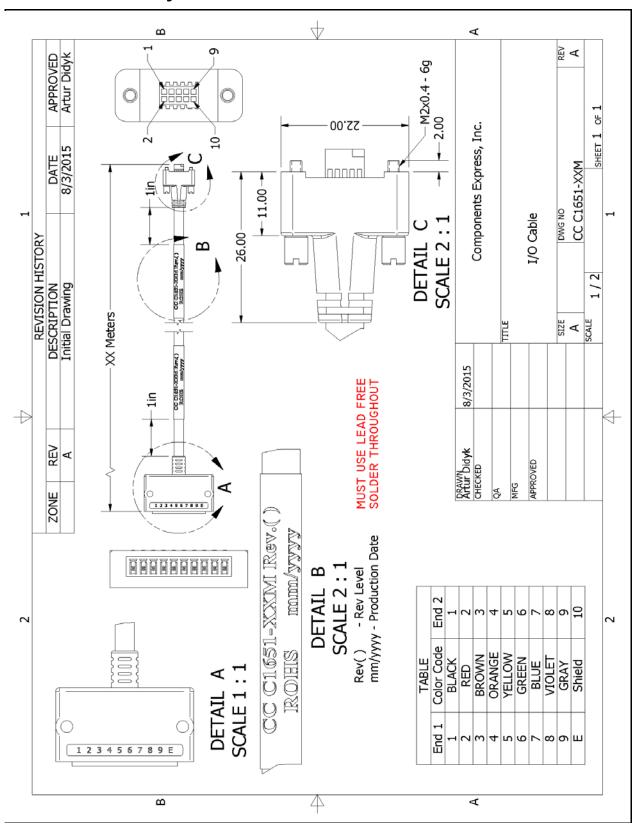

Users also may order cable assembly quantities directly from Alysium-Tech or Components Express. In such cases use the manufacturer's part number shown on the cable assembly engineering drawing.

Cable Manufactures Contact Information

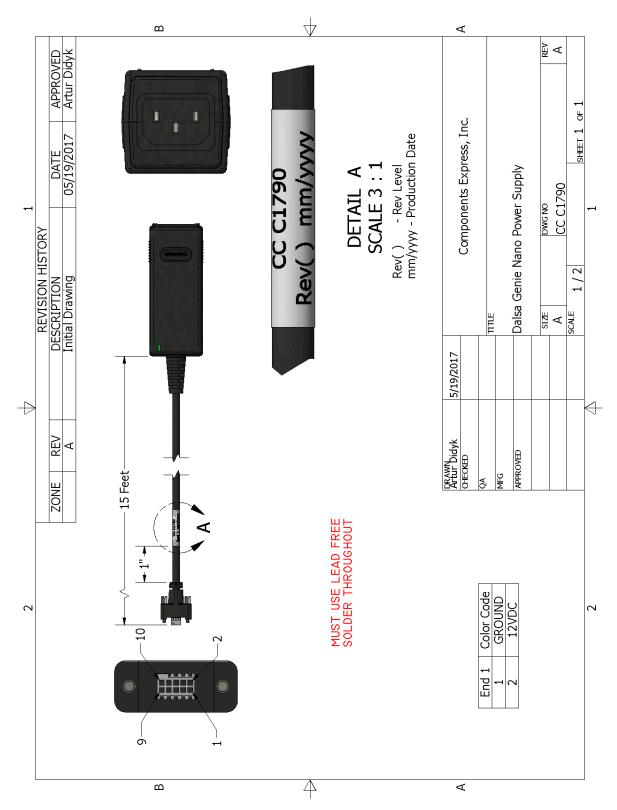

For Information contact: (see their web site for worldwide offices)	Alysium-Tech 101 Montgomery Street, Suite 2050 San Francisco, CA 94104 Phone: 415 248 7807
	Fax: 415 248 7800 https://www.alysium.com/

For Information	Components Express, Inc. (CEI)	
contact:	10330 Argonne Woods Drive, Suite 100	
(see their web site for worldwide offices)	Woodridge, IL 60517-4995	
	Phone: 630-257-0605 / 800.578.6695 (outside Illinois) Fax: 630-257-0603	
	http://www.componentsexpress.com/	

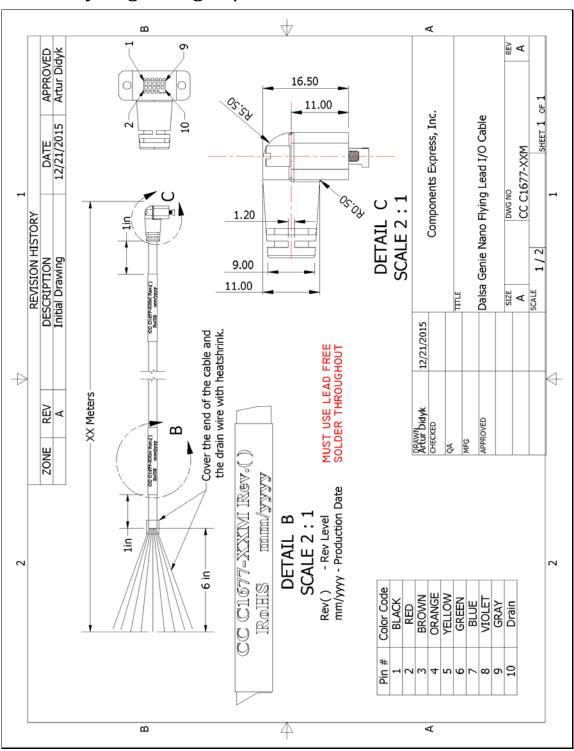
Cable Assembly G3-AIOC-BLUNT1M

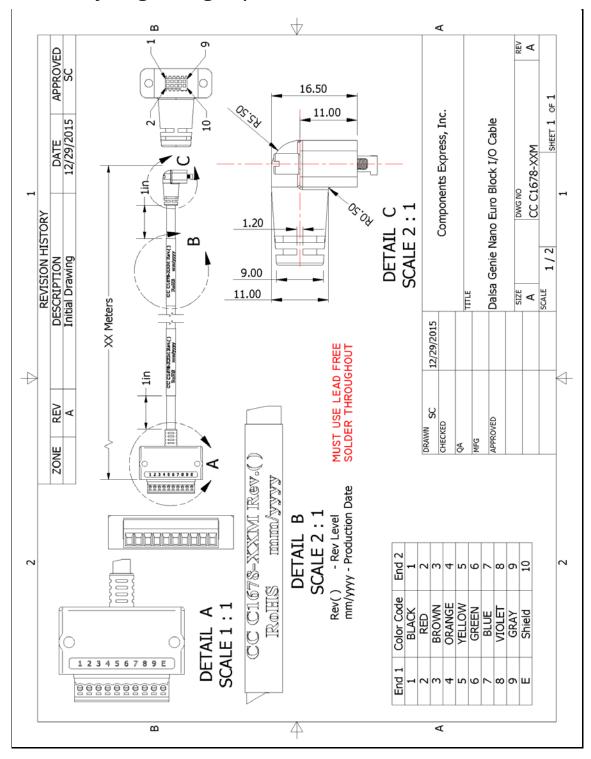


Cable Assembly G3-AIOC-BLUNT2M



Cable Assembly G3-AIOC-BRKOUT2M


Nano Generic Power Supply with no I/O


Components Express Right-Angle Cable Assemblies

These cable assemblies can be acquired directly from our partner Components Express. In such cases use the manufacturer's part number shown on the cable assembly engineering drawing.

Cable Assembly: Right-Angle I/O Bunt End

Cable Assembly: Right-Angle I/O to Euro Block

Troubleshooting

Overview

In rare cases an installation may fail or there are problems in controlling and using the Nano camera. This section highlights issues or conditions which may cause installation problems. Emphasis is on the user to perform diagnostics with the tools provided plus methods are described to correct the problem.

Problem Type Summary

Nano-CXP problems are either installation issues due to cabling or power, or setup errors with the frame grabber configuration.

Before Contacting Technical Support

Carefully review the issues described in this Troubleshooting section. To aid Teledyne DALSA personnel when support is required, the following should be included with the request for support.

- From the Start menu, go to Programs Dalsa Sapera LT Tools and run the Log Viewer program. From its File menu click on Save Messages to generate a log text file.
- Report the version of Genie Nano Firmware and Sapera version used.
- Report the frame grabber brand and model used. Provide specifications for any third part frame grabber used.

Device Available with Operational Issues

This section considers issues with frame grabbers, cabling, multiple cameras and camera exposure.

Firmware Updates

As a general rule any Nano installation must include the firmware update procedure to ensure having the latest build (see <u>Updating Firmware via File Access in CamExpert</u>).

Note:

 A Nano-CXP that had a fault with a firmware update will automatically recover by booting with the previous firmware version.

Important: New Nano-CXP cameras installed in previously deployed systems are fully backward compatible with the older vision application.

Power Failure during a Firmware Update-Now What?

Don't panic! There is far greater chance that the host computer OS is damaged during a power failure than any permanent problems with the Nano. When electrical power returns and the host computer system has restarted follow this procedure.

- Connect power to the Nano-CXP. The Nano processor knows that the firmware update failed.
- The Nano-CXP will boot with the previous version of firmware and will operate normally.
- The Nano Self Status (deviceBISTStatus) will return that the last firmware update failed.
- Perform the firmware update procedure again.

Cabling and Communication Issues

With only 4 CXP coax cables and possibly an external power supply (if not using PoCXP), possible cabling issues are limited.

Power supply problems:

- If using PoCXP power, verify that the frame grabber used has activated its PoCXP source function. Note that the frame grabber typically requires direct PC power connected to it, as directed by the grabber's user manual.
- If using DC supply power via the I/O camera connector, verify the power supply voltage and I/O cable wiring.

Communication Problems:

- Use quality DIN 1.0/2.3 coax cables along with quality shielded I/O cables. This can eliminate issues in a high EMI environment. Purchase CXP cables from certified sources.
- Use the Log Viewer tool (see point below) for error conditions.
- Run the Sapera Log Viewer: **Start Programs Teledyne DALSA Sapera LT Tools Log Viewer**. Start the Nano-CXP acquisition program, such as CamExpert. Review the log output for error messages.

Camera is functional, frame rate is as expected, but image is black

- Using CamExpert set the Nano-CXP to output its Internal Pattern Generator (with external trigger Off). This step is typically done for any camera installation to quickly verify the Nano and its software package.
- If using an external trigger exposure (via the frame grabber), verify the trigger source rate and pulse width coming from the grabber parameters.
- Verify that the lens iris is open.
- Aim the Nano-CXP at a bright light source.
- Check that the programmed exposure duration is not too short or set it to maximum.

Revision History

Revision	Date	Major Change Description
R: 0.2	August 29, 2019	preliminary version made available
R: 0001	October 4, 2019	Initial release
R: 0002	February 14, 2020	Various updates

Contact Information

Sales Information

Visit our web site:	www.teledynedalsa.com/mv
Email:	mailto:info@teledynedalsa.com

Canadian Sales

Teledyne DALSA — Head office Teledyne DALSA — Montreal office

605 McMurray Road

880 Rue McCaffrey Saint-Laurent, Quebec, Canada, H4T 2C7 Waterloo, Ontario, Canada, N2V 2E9

Tel: 519 886 6000 Tel: (514) 333-1301 Fax: 519 886 8023 (514) 333-1388

USA Sales European Sales

Teledyne DALSA — Billerica office Teledyne DALSA GMBH 700 Technology Park Drive Lise-Meitner-Str. 7 Billerica, Ma. 01821 82152 Krailling (Munich), Germany

(978) 670-2000 Tel: +49 - 89 89545730 sales.europe@teledynedalsa.com Fax: (978) 670-2010

Asian Sales

Teledyne DALSA Asia Pacific Shanghai Industrial Investment Building Ikebukuro East 13F Room G, 20F, 18 North Cao Xi Road, Shanghai, China 200030 3-4-3 Higashi Ikebukuro,

Toshima-ku, Tokyo, Japan Tel: +86-21-64279081 +81 3 5960 6353 Fax: +86-21-64699430 Fax: +81 3 5960 6354

Technical Support

Submit any support question or request via our web site:

Technical support form via our web page: Support requests for imaging product installations, Support requests for imaging applications http://www.teledynedalsa.com/mv/support Camera support information

Product literature and driver updates

