
Sapera LT ++™ 8.10
Programmer's Manual

P/N: OC-SAPM- SPPP0
www.teledynedalsa.com

sensors | cameras | frame grabbers | processors | software | vision solutions

http://www.teledynedalsa.com/

NOTICE

© 2015 Teledyne DALSA, inc. All rights reserved.

This document may not be reproduced nor transmitted in any form or by any means, either electronic or
mechanical, without the express written permission of TELEDYNE DALSA. Every effort is made to ensure the
information in this manual is accurate and reliable. Use of the products described herein is understood to be at the
user’s risk. TELEDYNE DALSA assumes no liability whatsoever for the use of the products detailed in this
document and reserves the right to make changes in specifications at any time and without notice.

Microsoft® is a registered trademark; Windows®, Windows® XP, Windows® Vista, Windows® 7, Windows® 8
are trademarks of Microsoft Corporation.

All other trademarks or intellectual property mentioned herein belongs to their respective owners.

Printed on September 28, 2015

Document Number: OC-SAPM-SPPP0
Printed in Canada

About This Manual

This manual exists in Windows Help, and Adobe Acrobat® (PDF) formats (printed manuals are available as special
orders). The Help and PDF formats make full use of hypertext cross-references. The Teledyne DALSA home page
on the Internet, located at http://www.teledynedalsa.com/imaging, contains documents, software updates,
demos, errata, utilities, and more.

About Teledyne DALSA
Teledyne DALSA is an international high performance semiconductor and electronics company that designs,
develops, manufactures, and markets digital imaging products and solutions, in addition to providing wafer
foundry services.

Teledyne DALSA Digital Imaging offers the widest range of machine vision components in the world. From
industry-leading image sensors through powerful and sophisticated cameras, frame grabbers, vision processors
and software to easy-to-use vision appliances and custom vision modules.

http://www.teledynedalsa.com/imaging

Sapera LT ++ Programmer's Manual Contents • 3

Contents

GETTING STARTED .. 5
ABOUT SAPERA LT ++ .. 5
SAPERA LT ARCHITECTURE .. 5
REQUIREMENTS ... 7
FILE LOCATIONS .. 7

HIERARCHY CHARTS ... 8
BASIC CLASS HIERARCHY CHART ... 8

USING SAPERA LT ++ ... 9
HEADER FILES, LIBRARIES, AND DLLS ... 9
SAPERA LT ++ - CREATING AN APPLICATION ... 10
DEMOS AND EXAMPLES ... 11

BASIC CLASS REFERENCE ... 12
DATA CLASSES .. 12
SAPACQUISITION ... 17
SAPACQCALLBACKINFO .. 34
SAPACQDEVICE ... 38
SAPACQDEVICECALLBACKINFO ... 55
SAPBUFFER .. 59
SAPBUFFERROI ... 89
SAPBUFFERWITHTRASH.. 93
SAPCOLORCONVERSION ... 96
SAPDISPLAY ... 106
SAPFEATURE .. 112
SAPFLATFIELD .. 128
SAPGIO .. 141
SAPGIOCALLBACKINFO .. 148
SAPLOCATION ... 152
SAPLUT .. 154
SAPMANAGER ... 164
SAPMANCALLBACKINFO .. 179
SAPMETADATA .. 182
SAPPERFORMANCE .. 187
SAPPROCESSING .. 189
SAPPROCALLBACKINFO .. 194
SAPTRANSFER ... 195
SPECIALIZED TRANSFER CLASSES ... 209
SAPVIEW .. 211
SAPVIEWCALLBACKINFO ... 225
SAPXFERCALLBACKINFO ... 226
SAPXFERNODE .. 231
SAPXFERPAIR ... 234
SAPXFERPARAMS ... 241

APPENDIX A: SAPERA LT AND GENICAM ... 245
WHAT IS GENICAM? ... 245
USING SAPERA LT WITH GENICAM-COMPLIANT DEVICES .. 245
NOTES ON THE SAPERA LT GENICAM IMPLEMENTATION .. 246
GIGEVISION IN SAPERA LT ... 247

4 • Contents Sapera LT ++ Programmer's Manual

APPENDIX B: OBSOLETE CLASSES .. 250

CONTACT INFORMATION .. 251
SALES INFORMATION .. 251
TECHNICAL SUPPORT .. 252

Sapera LT ++ Programmer's Manual Getting Started • 5

Getting Started

About Sapera LT ++
Sapera™ LT is a software API for controlling image acquisition devices such as frame grabbers and camera.
Sapera LT libraries support Teledyne DALSA cameras and frame grabbers as well as hundreds of 3rd party camera
models across all common interfaces formats like GigE Vision®, Camera Link®, as well as emerging new image
acquisition standards such as CLHS.

If your application requires image processing or GPU optimization, Sapera Essential, a full-featured
image processing library, is available as a separate software package. For more information see
www.teledynedalsa.com/imaging/products/software/.

Sapera LT Architecture
The following section describes application architecture, related terms, and illustrates Sapera LT’s library
architecture.

Application Architecture
The Sapera LT modular architecture allows applications to be distributed on different Sapera LT servers. Each
server can run either on the host computer or on a Teledyne DALSA device. Sapera LT calls are routed to different
servers via the Sapera LT messaging layer in a fashion completely independent of the underlying hardware.

6 • Getting Started Sapera LT ++ Programmer's Manual

What is a server?

A Sapera Server is an abstract representation of a physical device like a frame grabber, a camera, or a desktop
PC. In general, a Teledyne DALSA board is a server. Some processing boards, however, may contain several
servers; this is true when using multi-processor boards.

A server allows Sapera applications to interact with the server’s resources.

Library Architecture
The typical machine vision application requires configuration of acquisition resources, image capture and transfer
to memory buffers. These image buffers can then be processed or displayed, analyzed, with results determining
subsequent processes. Events can also be monitored to trigger appropriate responses. The Sapera LT library
architecture is organized around these basic machine vision functional blocks.

The following block diagram, while not exhaustive of all the classes available in Sapera LT, illustrates the major
functional blocks with the corresponding classes.

The Sapera LT User’s Manual provides explanations and multiple code snippets for typical application
operations.

It is always recommended to use the source code provided with the demos and examples as both a
learning tool and a starting point for your applications. For a complete list and description of the demos
and examples included with Sapera LT see the Sapera LT Getting Started Manual.

Sapera LT ++ Programmer's Manual Getting Started • 7

Requirements
For 32-bit development, Sapera LT ++ currently supports the following compilers:

• Microsoft Visual C++ 2005 (with Service Pack 1)
• Microsoft Visual C++ 2008 (with Service Pack 1)
• Microsoft Visual C++ 2010
• Microsoft Visual C++ 2012
• Microsoft Visual C++ 2013
• Borland C++ Builder XE (versions XE1 to XE5) (Basic Classes only)

For 64-bit, development, it supports the following compilers:
• Microsoft Visual C++ 2005 (with Service Pack 1)
• Microsoft Visual C++ 2008 (with Service Pack 1)
• Microsoft Visual C++ 2010
• Microsoft Visual C++ 2012
• Microsoft Visual C++ 2013

File Locations
The table below shows the different file groups with their respective locations.
Description Location

Basic Classes headers Sapera\Classes\Basic
GUI Classes headers and source code Sapera\Classes\Gui
32-bit import librairies (compiler independent) Sapera\Lib\Win32
32-bit import librairies (Visual C++ 2005) Sapera\Lib\Win32\VS2005
32-bit import librairies (Visual C++ 2008) (if compiled) Sapera\Lib\Win32\VS2008
32-bit import librairies (Visual C++ 2010) (if compiled) Sapera\Lib\Win32\VS2010
32-bit import librairies (Visual C++ 2012) (if compiled) Sapera\Lib\Win32\VS2012
32-bit import librairies (Visual C++ 2013) (if compiled) Sapera\Lib\Win32\VS2013
32-bit Import libraries (Borland C++ Builder XE1 to XE5) Sapera\Lib\Win32\Borland
64-bit import librairies (compiler independent) Sapera\Lib\Win64
64-bit import librairies (Visual C++ 2005) Sapera\Lib\Win64\VS2005
64-bit import librairies (Visual C++ 2008) (if compiled) Sapera\Lib\Win64\VS2008
64-bit import librairies (Visual C++ 2010) (if compiled) Sapera\Lib\Win64\VS2010
64-bit import librairies (Visual C++ 2012) (if compiled) Sapera\Lib\Win64\VS2012
64-bit import librairies (Visual C++ 2013) (if compiled) Sapera\Lib\Win64\VS2013
Dynamic-link libraries (DLLs) Windows system directory

(<windir>\System32)

8 • Hierarchy Charts Sapera LT ++ Programmer's Manual

Hierarchy Charts

Basic Class Hierarchy Chart

SapManager

SapLocation

SapProcessing

SapPerformance

SapBuffer

SapCab

SapBufferWithTrash

SapView

SapAcquisition

SapDsp

SapPixPro

SapXferNode

SapTransfer

SapXferPair

SapGraphic

SapLut

SapXferCallbackInfo

SapCounterCallbackInfo

SapPixProParams

SapXferParams

SapDisplay SapGio

SapCounter

SapProCallbackInfo

SapAcqCallbackInfo

SapGioCallbackInfo

SapManCallbackInfo

SapViewCallbackInfo

SapData

Data Classes
(SapDataxxx)

SapBufferRoi

Indicates Legacy Classes

See the Legacy Classes
Reference Manual

Specialized Transfer Classes
(SapXXXtoYYY)

SapAcqToBuf

SapAcqDeviceToBuf

SapBufToBuf

SapMultiAcqToBuf

SapBufferRemote

SapAcqDevice

SapBayerSapColorConversion

SapMetadata

Sapera LT ++ Programmer's Manual Using Sapera LT ++ • 9

Using Sapera LT ++

Header Files, Libraries, and DLLs
The following files are provided with Sapera LT. Also, ‘XX’ refers to the current Sapera LT version number, for
example, SapClassBasic74.dll for the version 7.40 Basic Classes DLL.

Starting from Sapera LT 7.50, only the SapClassGui.dll for 2005 is distributed since demos and examples are compiled
with this version of Microsoft Visual Studio 2005.

SapClassGui source code is included with all demo Visual Studio solutions (2005-2013), therefore individual
SapClassGui.dll files can be compiled depending on the selected platform. When compiled, the SapClassGui.dll is
available in the respective Sapera\Lib\Win32\VS20xx or Sapera\Lib\Win64\VS20xx directories.

Note that library and DLL files with the ‘D’ suffix (for example, SapClassGuiD.lib) denote debug versions.

File Name Description Location

SapClassBasic.h Basic class header file Sapera\Classes\Basic
SapClassGui.h GUI class header file Sapera\Classes\Gui

SapClassBasic.lib Basic class libraries for all Visual

C++ versions
Sapera\Lib\Win32
Sapera\Lib\Win64

SapClassGui.lib GUI class libraries for Visual C++
2005

Sapera\Lib\Win32\VS2005
Sapera\Lib\Win64\VS2005

SapClassBasic.lib Basic class library for Borland C++
Builder XE1 to XE5

Sapera\Lib\Win32\Borland

SapClassBasicXX.dll Basic class DLL <windir>\System32
SapClassGuiXX.dll GUI class DLLs for Visual C++ 2005 <windir>\System32
SapClassGuiXX.NET_2008.dll

GUI class DLLs for Visual C++ 2008 <windir>\System32

SapClassGuiXX.NET_2010.dll

GUI class DLLs for Visual C++ 2010 <windir>\System32

SapClassGuiXX.NET_2012.dll

GUI class DLLs for Visual C++ 2012 <windir>\System32

SapClassBasicXX_b.dll Basic class DLL for Borland C++
Builder XE1 to XE5

<windir>\System32

10 • Using Sapera LT ++ Sapera LT ++ Programmer's Manual

Sapera LT ++ - Creating an Application
The following sections describe how to create a Sapera LT ++ application in Visual C++ 2005/2008/2010/2012/2013
and Borland C++ Builder XE1 to XE5.

Visual Studio 2005/2008/2010/2012/2013

Follow the steps below to compile and link an application that uses the Basic Classes:

• Include SapClassBasic.h in the program source code (it includes all other required headers)
• Add $(SAPERADIR)\Classes\Basic and $(SAPERADIR)\Include in Project | Properties | C/C++ |

General | Additional Include Directories
• If you are building a 32-bit application, insert

Insert $(SAPERADIR)\Lib\Win32\SapClassBasic.lib in Project | Add Existing Item …
• If you are building a 64-bit application, insert

Insert $(SAPERADIR)\Lib\Win64\SapClassBasic.lib in Project | Add Existing Item …
• In Project | Properties | C/C++ | Code Generation | Runtime Library, choose the option Multi-threaded

DLL (in release mode) or Multi-threaded Debug DLL (in debug mode)

Follow the additional steps below to compile and link an application that uses the GUI Classes:

• Include SapClassGui.h in the program source code (it includes all other required headers)
• Add $(SAPERADIR)\Classes\Gui in Project | Properties | C/C++ | General | Additional Include

Directories
• If you are building a 32-bit application, insert $(SAPERADIR)\Lib\Win32\VS2005\SapClassGui.lib

(or VS2008/VS2010/VS2012/VS2013) and SapClassGuiD.lib in Project | Add Existing Item …
• If you are building a 64-bit application, insert $(SAPERADIR)\Lib\Win64\VS2005\SapClassGui.lib

(or VS2008/VS2010/VS2012/VS2013) and SapClassGuiD.lib in Project | Add Existing Item …
• In Project | Properties | General, select Not Set for Character Set
• In Project | Properties | General for SapClassGui.lib, select Excluded From Build for Debug
• In Project | Properties | General for SapClassGuiD.lib, select Excluded From Build for Release

If you also want to modify the source code for the GUI Classes and recompile the associated DLL in Debug or Release
mode, the SapClassGui project is available from the SapDemos_2005.sln, SapDemos_2008.sln, SapDemos_2010.sln,
SapDemos_2012.sln, and SapDemos_2013.sln solution files in the Sapera\Demos\Classes\Vc directory.

Sapera LT ++ Programmer's Manual Using Sapera LT ++ • 11

Updating Existing Visual Studio Projects
Here is a generic procedure for updating existing projects from an older version of Visual Studio to a newer version:

• Open the newer version OF Visual Studio
• Open the existing solution (or workspace) file with the project(s) to convert from the older version
• Follow the instructions for converting the old projects to the new project format
• Review the warnings (if any) listed in the conversion report, you may need to make changes to project

properties as a result
• If the projects only target 32-bit Windows (Win32), you will need to add 64-bit targets (x64) if necessary
• Compile the converted projects, you may need to fix compiler/linker errors and warnings
• If a project uses the SapClassGui/SapClassGuiD libraries, you must first recompile these
• If a project uses the SapClassGui/SapClassGuiD libraries in its file list, delete these entries from the file

list, and insert the libraries you just recompiled
• If a project uses the SapClassGui/SapClassGuiD libraries in the linker options, check that the file paths

correspond to the libraries you just recompiled

Note that this update procedure is more appropriate for versions of Visual Studio which are closer to one another. For
versions which are completely different (for example, Visual Studio 6 to Visual Studio 2010), it is preferable to rewrite
the projects from scratch.

Borland C++ Builder XE1 to XE5
Follow the steps below to compile and link a 32-bit application that uses the Basic Classes:

• When creating an application, verify that the multi-threaded runtime option is enabled.
• Include SapClassBasic.h in the program source code (it includes all other required headers)
• Add $(SAPERADIR)\Classes\Basic and $(SAPERADIR)\Include in Project | Options… | C++

Compiler | Paths and Defines | Include search path.
• Insert $(SAPERADIR)\Lib\Win32\Borland\SapClassBasic.lib in Project | Add to Project …

The GUI Classes are not supported under C++ Builder XE.

Notes on Using the Sapera LT ++ API
 When using the Sapera LT ++ API, you must not have a static instance of a Sapera LT ++ object. Also, you must not
allocate or free such an object from the DllMain function.

 SapBuffer staticBuf; // Wrong !!
 SapBuffer *pBuffer; // OK

 DllMain()
 {
 pBuffer = new SapBuffer(); // Wrong !!
 delete pBuffer; // Wrong !!
 }

 MyFunction()
 {
 pBuffer = new SapBuffer(); // OK
 delete pBuffer; // OK
 }

Demos and Examples
Refer to the Sapera LT User’s Manual for a description of the Sapera LT ++ demos as well as examples available in
Sapera .NET.

12 • Basic Class Reference Sapera LT ++ Programmer's Manual

Basic Class Reference

Data Classes

SapData and its derived classes act as wrappers for low-level Sapera LT data types, where each class encapsulates
one data element of a specific type. They are used as method arguments or return values in various Sapera LT ++
classes.

SapData Class

Purpose
This is the common base class for all other data classes. Though SapData objects may be directly instantiated,
they serve no useful purpose.

void Clear();
Clears the data element to black, which almost always corresponds to the numeric value 0 (with a few
exceptions, for example, the YUV color format).

SapFormatType GetType();
Identifies to which SapDataXxx class the current object is an instance. See the SapManager::GetFormatType
method for the list of available types.
Demo/Example Usage
Not available

Sapera LT ++ Programmer's Manual Basic Class Reference • 13

SapDataFRGB Class

Purpose
Encapsulates one element supporting Sapera floating-point RGB data types

SapDataFRGB();
SapDataFRGB(float red, float green, float blue);
Class constructor, where the red, green, and blue arguments specifies an initial value other than black

float Red();
Returns the red component of the current value of the data element

float Green();
Returns the green component of the current value of the data element

float Blue();
Returns the blue component of the current value of the data element

void Set(float red, float green, float blue);
Specifies a new value for the data element
Demo/Example Usage
Not available

SapDataHSI Class

Purpose
Encapsulates one element supporting Sapera HSI data types

SapDataHSI();
SapDataHSI(int h, int s, int i);
Class constructor, where the h, s, and i arguments specify an initial value other than black

int H();
Returns the H component of the current value of the data element

int S();
Returns the S component of the current value of the data element

int I();
Returns the I component of the current value of the data element

void Set(int h, int s, int i);
Specifies a new value for the data element
Demo/Example Usage
Not available

SapDataHSV Class

Purpose
Encapsulates one element supporting Sapera HSV data types

SapDataHSV();
SapDataHSV(int h, int s, int v);
Class constructor, where the h, s, and v arguments specify an initial value other than black

int H();
Returns the H component of the current value of the data element

int S();
Returns the S component of the current value of the data element

int V();
Returns the V component of the current value of the data element

void Set(int h, int s, int v);
Specifies a new value for the data element
Demo/Example Usage
Not available

14 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapDataFloat Class

Purpose
Encapsulates one element supporting Sapera floating-point data types

SapDataFloat();
SapDataFloat(float flt);
Class constructor, where the flt argument specifies an initial value other than black

int Float();
Returns the current value of the data element

void Set(float flt);
Specifies a new value for the data element
Demo/Example Usage
Not available

SapDataFPoint Class

Purpose
Encapsulates one element supporting Sapera data types representing floating-point (x, y) coordinate pairs

SapDataFPoint();
SapDataFPoint(float x, float y);
Class constructor, where the x and y arguments specify an initial value other than (0.0, 0.0)

float X();
Returns the X component of the current value of the data element

float Y();
Returns the Y component of the current value of the data element

void Set(float x, float y);
Specifies a new value for the data element
Demo/Example Usage
Not available

SapDataMono Class

Purpose
Encapsulates one element supporting Sapera monochrome data types (excluding 64-bit)

SapDataMono();
SapDataMono(int mono);
Class constructor, where the mono argument specifies an initial value other than black

int Mono();
Returns the current value of the data element

void Set(int mono);
Specifies a new value for the data element
Demo/Example Usage
Example Common Utiltities

Sapera LT ++ Programmer's Manual Basic Class Reference • 15

SapDataPoint Class

Purpose
Encapsulates one element supporting Sapera data types representing integer (x, y) coordinate pairs

SapDataPoint();
SapDataPoint(int x, int y);
Class constructor, where the x and y arguments specify an initial value other than (0, 0)

int X();
Returns the X component of the current value of the data element

int Y();
Returns the Y component of the current value of the data element

void Set(int x, int y);
Specifies a new value for the data element
Demo/Example Usage
Not available

SapDataRGB Class

Purpose
Encapsulates one element supporting Sapera RGB data types

SapDataRGB();
SapDataRGB(int red, int green, int blue);
Class constructor, where the red, green, and blue arguments specify an initial value other than black

int Red();
Returns the red component of the current value of the data element

int Green();
Returns the green component of the current value of the data element

int Blue();
Returns the blue component of the current value of the data element

void Set(int red, int green, int blue);
Specifies a new value for the data element
Demo/Example Usage
Example Common Utiltities

SapDataRGBA Class

Purpose
Encapsulates one element supporting Sapera RGB with alpha channel data types

SapDataRGBA();SapDataRGBA(int red, int green, int blue, int alpha);
Class constructor, where the red, green, blue and alpha arguments specify an initial value other than black
int Red();
Returns the red component of the current value of the data element
int Green();
Returns the green component of the current value of the data element
int Blue();
Returns the blue component of the current value of the data element
int Alpha();
Returns the alpha component of the current value of the data element
void Set(int red, int green, int blue, int alpha);
Specifies a new value for the data element
Demo/Example Usage
Not available

16 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapDataYUV Class

Purpose
Encapsulates one element supporting Sapera YUV data types

SapDataYUV();
SapDataYUV(int y, int u, int v);
Class constructor, where the y, u, and v arguments specify an initial value other than black

int Y();
Returns the Y component of the current value of the data element

int U();
Returns the U component of the current value of the data element

int V();
Returns the V component of the current value of the data element

void Set(int y, int u, int v);
Specifies a new value for the data element
Demo/Example Usage
Not available

Sapera LT ++ Programmer's Manual Basic Class Reference • 17

SapAcquisition

The SapAcquisition Class includes the functionality to manipulate an acquisition resource. It is used as a source
transfer node to allow data transfers from an acquisition resource to another transfer node, such as a buffer.

#include <SapClassBasic.h>

Note: Genie cameras are not supported by this class. The SapAcqDevice class must be used in such cases.

SapAcquisition Class Members
Construction
SapAcquisition Class constructor
Create Allocates the low-level Sapera resources
Destroy Releases the low-level Sapera resources
Attributes
GetConfigFile, Gets/sets the name of the acquisition configuration file (CCF)
SetConfigFile
GetLabel Gets a text description of the acquisition resource
GetEventType, Gets/sets the combination of registered acquisition event types
SetEventType
SetCallbackInfo Sets the application callback method for acquisition events and the

associated context
GetCallback Gets the current application callback method for acquisition events
GetContext Gets the application context associated with acquisition events
GetCamSel, Gets/sets the current camera selector value
SetCamSel
IsLutEnabled Gets the current LUT enable value
CanEnableLut Checks if the acquisition lookup table may be enabled/disabled
GetFlipMode, Gets/sets the flipping (that is, mirroring) mode for acquired images
SetFlipMode
GetNumPlanarInputs Gets the number of cameras used for acquiring into vertical planar buffers
GetPlanarInputs, Gets/sets the current configuration for acquiring into vertical planar buffers
SetPlanarInputs
IsFlatFieldAvailable Gets availability of hardware-based flat-field correction
IsColorConversionAvailable Gets availability of hardware-based color conversion
IsImageFilterAvailable Gets availability of hardware-based image filter
IsImageFilterEnabled Gets the current image filter enable value
IsTimeStampAvailable Gets availablity of hardware-based timestamp
IsWhiteBalanceAvailable Gets available of hardware-based gains for white balance control
GetTimeStampBase Gets/sets the timestamp base unit

18 • Basic Class Reference Sapera LT ++ Programmer's Manual

SetTimeStampBase
GetSerialPortName Gets the name of the serial port attached to the current acquisition device
Operations
SaveParameters Saves the acquisition parameters to an acquisition configuration file (CCF)
GetNumLut Gets the number of available acquisition look-up tables
GetLut Gets an acquisition lookup table
ApplyLut Reprograms an acquisition lookup table
EnableLut Enables/disables the acquisition lookup tables
EnableImageFilter Enables/disables the acquisition image filter
GetImageFilter Gets/sets the values of the acquisition image filter
SetImageFilter
GetImageFilterKernelSize Gets the image filter kernel size
LoadImageFilter Loads a hardware-based image filter kernel from file
SaveImageFilter Saves a hardware-based image filter kernel to file
IsSignalStatusAvailable Checks for availability of the status of input acquisition signals
GetSignalStatus Gets the current status of input acquisition signals
SoftwareTrigger Simulates a trigger to the acquisition device
IsCapabilityValid Checks for the availability of a low-level Sapera C library capability
IsParameterValid Checks for the availability of a low-level Sapera C library parameter
GetCapability Gets the value of a low-level Sapera C library capability
GetParameter, Gets/sets the value of a low-level Sapera C library parameter
SetParameter
CustomCommand Issues a low-level custom command specific to the acquisition hardware
ResetTimeStamp Resets the acquisition hardware timestamp counter to zero
RegisterCallback Registers a callback function for the event associated with a specified name

or index
UnregisterCallback Unregisters a callback function on the event associated with a specified name

or index

SapAcquisition Member Functions
The following are members of the SapAcquisition Class.

SapAcquisition::SapAcquisition
SapAcquisition(

SapLocation loc = SapLocation::ServerSystem
);

SapAcquisition(
SapLocation loc, const char *configFile,
SapAcquisition::EventType eventType = SapAcquisition::EventNone,
SapAcqCallback pCallback = NULL,
void *pContext = NULL
);

SapAcquisition(
SapLocation loc,
const char *camfile,
const char *vicfile,
SapAcquisition::EventType eventType = SapAcquisition::EventNone,
SapAcqCallback pCallback = NULL, void *pContext = NULL
);

SapAcquisition
(
const SapAcquisition &acq,

Sapera LT ++ Programmer's Manual Basic Class Reference • 19

SapAcquisition::EventType eventType,
SapAcqCallback pCallback,
void *pContext = NULL
);

Parameters
loc SapLocation object specifying the server where the acquisition resource is located and the index

of the acquisition resource on this server.
configFile Name of the acquisition configuration file (CCF) that describes all camera and frame grabber-

related acquisition parameters. Use one of the standard CCF files provided with Sapera or create
one using the CamExpert utility.

camfile Name of the configuration file (CCA) that describes all camera related acquisition parameters
(obsolete)

vicfile Name of the configuration file (CVI) that describes all frame grabber-related acquisition
parameters (obsolete)

eventType Acquisition events for which the application callback function will be called. One or more of the
following values may be combined together using a bitwise OR operation:

 SapAcquisition::EventNone No events
 SapAcquisition::EventStartOfFrame Start of frame
 SapAcquisition::EventStartOfField Start of any field (odd or even)
 SapAcquisition::EventStartOfOdd Start of odd field
 SapAcquisition::EventStartOfEven Start of even field
 SapAcquisition::EventEndOfFrame End of frame
 SapAcquisition::EventEndOfField End of any field (odd or even)
 SapAcquisition::EventEndOfOdd End of odd field
 SapAcquisition::EventEndOfEven End of even field
 SapAcquisition::EventEndOfLine After a specific line number

eventType = SapAcquisition::EventEndOfLine | lineNum
 SapAcquisition::EventEndOfNLines After a specific number of lines (linescan cameras only)

eventType = SapAcquisition::EventEndOfNLines |
numLines

 SapAcquisition::EventVirtualFrame Equivalent to EventStartOfFrame for linescan cameras
 SapAcquisition::EventExternalTrigger Received an external trigger that will then acquire at

least one image. The maximum callback rate cannot be
greater than the acquisition video frame rate.

 SapAcquisition::EventVerticalSync Vertical sync detected, even if not acquiring
 SapAcquisition::EventNoHSync Timeout due to a missing horizontal sync during live

acquisition. You can set the timeout value by calling the
SetParameter method for
CORACQ_PRM_HSYNC_TIMEOUT. The event is only
generated once, unless a new SapTransfer::Grab or
SapTransfer::Snap command is issued or a new
horizontal sync is detected.

 SapAcquisition::EventNoVSync Timeout due to a missing horizontal sync during live
acquisition. You can set the timeout value by calling the
SetParameter method for
CORACQ_PRM_VSYNC_TIMEOUT. The event is only
generated once, unless a new SapTransfer::Grab or
SapTransfer::Snapt command is issued or a new
horizontal sync is detected

 SapAcquisition::EventNoPixelClk No pixel clock detected. Generated only once, unless a
new SapTransfer::Snap/Grab command is issued or the
pixel clock is detected again and then lost.

 SapAcquisition::EventPixelClk Pixel clock detected. Generated only once, unless a new
SapTransfer::Snap/Grab command is issued or the pixel
clock is lost again and then detected.

 SapAcquisition::EventFrameLost Lost a frame during live acquisition. This usually occurs

20 • Basic Class Reference Sapera LT ++ Programmer's Manual

if there is not enough bandwidth to transfer images to
host memory.

 SapAcquisition::EventDataOverflow Data overflow occurred during live acquisition. This
usually occurs if the acquisition device cannot sustain
the data rate of the incoming images.

 SapAcquisition::
EventExternalTriggerIgnored

Dropped an external trigger event. This usually occurs
when the external trigger rate is faster then the
acquisition frame rate.

 SapAcquisition::
EventExternalTriggerTooSlow

The detected external line trigger rate is too slow for
the hardware to process. This can usually occur when
using the shaft encoder multiplier.

 SapAcquisition::EventHsyncLock Detected a horizontal sync unlock to lock condition.
 SapAcquisition::EventHsyncUnlock Detected a horizontal sync lock to unlock condition.
 SapAcquisition::EventVerticalTimeout Detected a vertical timeout. You can set the timeout

value by calling the SetParameter method for
CORACQ_PRM_VERTICAL_TIMEOUT_DELAY.

 SapAcquisition::EventLinkError Detected an error on the link between the camera and
the frame grabber (for HSLink cameras only). The exact
error condition may be one of the following: 8-bit/10-
bit encoding, packet header error, CRC error, bad
revision, or lost idle lock.

 SapAcquisition::
EventLineTriggerTooFast

The detected line trigger rate is too fast for the
hardware to process. This can occur when using the
shaft encoder multiplier.

 SapAcquisition::EventShaftEncoderRev
erseCountOverflow

Detected an overflow of the shaft encoder reverse
counter.

 SapAcquisition::EventLinkLock Detected all required lanes are locked (for HSLink and
CLHS cameras only).

 SapAcquisition::EventLinkUnlock Detected at least one of the required lanes lost the link
lock (for HSLink and CLHS cameras only)

 Important Note: You will not usually need to catch acquisition events. They must not be
confused with the transfer event mechanism used in almost all applications. If you need
acquisition events, review the User’s Manual for your acquisition hardware to find which ones are
supported. For transfer related events, see the SapTransfer Class for more information.

pCallback Application callback function to be called each time one of the events specified above is received.
If eventType is EventNone, this parameter is ignored.
The callback function must be declared as:
void MyCallback(SapAcqCallbackInfo *pInfo);

pContext Optional pointer to an application context to be passed to the callback function. If pCallback is
NULL or eventType is EventNone, this parameter is ignored.

acq Existing acquisition object
Remarks
The SapAcquisition constructor does not actually create the low-level Sapera resources. To do this, you must
call the Create method.
The constructor with the camFile and vicFile arguments is now obsolete. However, you may use it for backward
compatibility with older versions of Sapera LT in which CCA and CVI files were used instead of CCF files.
The constructor with an acquisition object, event type, callback function and context is useful in one particular
case. If you use the GUI class CAcqConfigDlg to load a configuration file, the resulting acquisition object is not
configured to handle events. You can then use this constructor to complete the configuration.
The SapAcquisition object is used only for storing the acquisition resource parameters. To acquire data, use
the SapTransfer Class (or one of its derived classes) and pass the SapAcquisition object as a parameter for the
constructor. SapTransfer then handles the actual data transfer. You can also use the SapAcqToBuf specialized
transfer class to simplify this task.
Demo/Example Usage
Bayer Demo, Dual Acquistion Demo, Flat Field Demo, Grab Demo, Sequential Grab Demo, Grab CameraLink
Example, Grab Console Example, Grab LUT Example,

Sapera LT ++ Programmer's Manual Basic Class Reference • 21

SapAcquisition::ApplyLut
BOOL ApplyLut(BOOL enable = TRUE);
BOOL ApplyLut(BOOL enable, int lutIndex);
Parameters
enable Enable or disable the lookup table after reprogramming
lutIndex Look-up table index
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Reprograms an acquisition lookup table. The first version of this method reprograms the first (and often the
only) LUT, whereas the second version allows a LUT index to be specified. Valid values for this index are from
0 to the value returned by the GetNumLut method, minus 1.
After getting the current LUT using the GetLut method, use the methods in the SapLut Class to manipulate it.
Then use ApplyLut to apply the changes. You need to enable the LUT in order to affect acquired images.
Note that some acquisition devices do not support enabling or disabling the LUT.
Demo/Example Usage
Grab LUT Example

SapAcquisition::CanEnableLut
BOOL CanEnableLut();
Remarks
Checks if the acquisition lookup table may be enabled/disabled. The initial value for this attribute is FALSE. It
is then set according to the current the acquisition device capability when calling the Create method.
Demo/Example Usage
Not available

SapAcquisition::Create
BOOL Create();
bool Create();
Return Value
Returns TRUE if the object was successfully created, FALSE otherwise
Remarks
Creates all the low-level Sapera resources needed by the acquisition object. Always call this method before
SapTransfer::Create.
Demo/Example Usage
Bayer Demo, Dual Acquistion Demo, Flat Field Demo, Grab Demo, Sequential Grab Demo, Grab CameraLink
Example, Grab Console Example, Grab LUT Example, Grab MFC Example

SapAcquisition::CustomCommand
BOOL CustomCommand(int command, void *inData, int inDataSize, void *outData, int outDataSize);
Parameters
Command Low-level command ID
inData Memory area with input data
inDataSize Number of bytes of input data
outData Memory area to receive output data
outDataSize Maximum number of bytes of output data
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Provides a way to directly call custom commands specific to the acquisition hardware.

22 • Basic Class Reference Sapera LT ++ Programmer's Manual

You will rarely need to use this method since the functionality is usually customer or OEM specific.
Demo/Example Usage
Not available

SapAcquisition::Destroy
BOOL Destroy();
Return Value
Returns TRUE if the object was successfully destroyed, FALSE otherwise
Remarks
Destroys all the low-level Sapera resources needed by the acquisition object. Always call this method after
SapTransfer::Destroy.
Demo/Example Usage
Bayer Demo, Dual Acquistion Demo, Flat Field Demo, Grab Demo, Sequential Grab Demo, Grab CameraLink
Example, Grab Console Example, Grab LUT Example, Grab MFC Example

SapAcquisition::EnableImageFilter
BOOL EnableImageFilter(BOOL enable = TRUE);
Parameters
Enable TRUE to enable the acquisition lookup table, FALSE to disable it
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Enables or disables the acquisition image filter. When the image filter is disabled, it does not affect acquired
images. However, its contents are not lost, so they may be used again without reprogramming the acquisition
hardware. Note that some acquisition devices do not support this feature.
Demo/Example Usage
Not available

SapAcquisition::EnableLut
BOOL EnableLut(BOOL enable = TRUE);
Parameters
Enable TRUE to enable the acquisition lookup table, FALSE to disable it
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Enables or disables the acquisition lookup table. When the LUT is disabled, it does not affect acquired images.
However, its contents are not lost, so they may be used again without reprogramming the acquisition
hardware. Note that some acquisition devices do not support this feature.
Demo/Example Usage
Grab LUT Example

SapAcquisition::GetCallback
SapAcqCallback GetCallback();
Remarks
Gets the current application callback method for acquisition events. The initial value for this attribute is NULL,
unless you specify another value in the constructor.
See the SapAcquisition constructor for more details.
Demo/Example Usage
Not available

SapAcquisition::GetCamSel, SapAcquisition::SetCamSel

Sapera LT ++ Programmer's Manual Basic Class Reference • 23

int GetCamsel();
BOOL SetCamSel(int camSel);
Remarks
Specifies the zero-based index of the camera input from which the acquisition device grabs images. The
maximum value allowed depends on the acquisition hardware and the current data format.
The initial value for this attribute is 0. It is then set according to the current acquisition device value when
calling the Create method.
You cannot call SetCamSel before the Create method or during live acquisition, that is, when the
SapTransfer::IsGrabbing method returns TRUE.
Demo/Example Usage
Not available

SapAcquisition::GetCapability
BOOL GetCapability(int cap, void *pValue);
Parameters
Cap Low-level Sapera C library capability to read
pValue Pointer to capability value to read back
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
This method allows direct read access to low-level Sapera C library capabilities for the acquisition module. It
needs a pointer to a memory area large enough to receive the capability value, which is usually a 32-bit
integer.
Note that this method is rarely needed. The SapAcquisition class already uses important capabilities internally
for self-configuration and validation.
See the Sapera LT Acquisition Parameters Reference Manual for a description of all capabilities and their
possible values.
Demo/Example Usage
Grab Demo

SapAcquisition::GetConfigFile, SapAcquisition::SetConfigFile
const char *GetConfigFile();
BOOL SetConfigFile(const char *configFile);
Remarks
Gets/sets the name of the acquisition configuration file (CCF).
You normally set the initial value for this attribute in the SapAcquisition constructor. If you use the default
constructor, then this value is NULL.
You can only call SetConfigFile before the Create method.
Demo/Example Usage
Grab Demo

SapAcquisition::GetContext
void *GetContext();
Remarks
Gets the application context associated with acquisition events. The initial value for this attribute is NULL,
unless you specify another value in the constructor.
See the SapAcquisition constructor for more details.
Demo/Example Usage
Not available

SapAcquisition::GetEventType, SapAcquisition::SetEventType
SapAcquisition::EventType GetEventType();

24 • Basic Class Reference Sapera LT ++ Programmer's Manual

BOOL SetEventType(SapAcquisition::EventType eventType);
Remarks
Gets/sets the combination of registered acquisition event types. The initial value for this attribute is
EventNone, unless you specify another value in the constructor.
You can only call SetEventType before the Create method. See the SapAcquisition constructor for possible
values for eventType.
Demo/Example Usage
Not available

SapAcquisition::GetFlipMode, SapAcquisition::SetFlipMode
SapAcquisition::FlipMode GetFlipMode();
BOOL SetFlipMode(SapAcquisition::FlipMode flipMode);
Parameters
flipMode SapAcquisition::FlipNone No flipping
 SapAcquisition::FlipHorizontal Acquired images are flipped horizontally
 SapAcquisition::FlipVertical Acquired images are flipped vertically
Remarks
Gets/sets the flipping (that is, mirroring) mode for acquired images. The initial value for this attribute is
FlipNone.
You can only call SetFlipMode after the Create method.
Demo/Example Usage
Not available

SapAcquisition::GetImageFilter, SapAcquisition::SetImageFilter
BOOL GetImageFilter(int filterIndex, SapBuffer *pKernel);
BOOL SetImageFilter(int filterIndex, SapBuffer *pKernel);
Parameters
filterIndex Kernel filter index.
pKernel Pointer to SapBuffer object containing the kernel values.
Remarks
Gets/sets the image filter kernel values. With an appropriate choice of kernel values, the image filter can
perform such operations as smoothing, edge or peak enhancement, or position shifting on the image.
Use the SapAcquisition::IsImageFilterAvailable to check if the acquisition device supports hardware-based
image filters.
The image filter values are specified in a SapBuffer object with SapFormatInt32 (signed values). The size of
the image filter is retrieved using the SapAcquisition::GetImageFilterKernelSize function. The values can be
accessed using the SapBuffer::ReadElement and SapBuffer::WriteElement functions.
Use the SetImageFilter function to update the hardware image filter kernel with the values contained in the
specified SapBuffer object. When the kernel is applied to the image, each pixel is multiplied by the
corresponding value in the kernel matrix (divided by the divisor), and the center pixel is replaced by the sum
of the resulting pixel values in the matrix.
Note: The actual weight of a pixel is the value in the buffer divided by the divisor. For example, if the divisor is
16384, a value of 24576 in the kernel provides a weight of 1.5 (that is, 24576/16384). Thus for a 3x3 low
pass filter with all kernel filter elements with an effective weight of 1, each kernel entry in the buffer would
have a value of (1/9) * CORACQ_CAP_IMAGE_FILTER_DIVISOR.
You can only call SetImageFilter after the Create method.
Note, currently available hardware only supports a single filter (filterIndex = 0).
Demo/Example Usage
See SapClassGui::CimageFilterEditorDlg

SapAcquisition::GetImageFilterKernelSize

Sapera LT ++ Programmer's Manual Basic Class Reference • 25

BOOL GetImageFilterKernelSize(int filterIndex, ImageFilterKernelSize *pKernelSize);
filterIndex Kernel filter index.
pKernelSize Kernel size. Possible values are:
 SapAcquisition::ImageFilterSize1x1
 SapAcquisition::ImageFilterSize2x2
 SapAcquisition::ImageFilterSize3x3
 SapAcquisition::ImageFilterSize4x4
 SapAcquisition::ImageFilterSize5x5
 SapAcquisition::ImageFilterSize6x6
 SapAcquisition::ImageFilterSize7x7
Remarks
Gets acquisition hardware image filter kernel size.
Note, currently available hardware only supports a single filter (filterIndex = 0).
Demo/Example Usage
See SapClassGui::CimageFilterEditorDlg

SapAcquisition::GetLabel
econst char* GetLabel();
Remarks
Gets a text description of the acquisition resource. This attribute is initially set to an empty string. After a
successful call to the Create method, it is composed of the name of the server where the acquisition resource
is located and the name of this resource: ServerName [ResourceName].
Example: "Xcelera-CL_PX4_1 [CameraLink Full Mono #1]"
After the label is initialized, its value never changes again.
Demo/Example Usage
Not available

SapAcquisition::GetLut
SapLut *GetLut(int lutIndex = 0);
Remarks
Gets an acquisition lookup table. All available LUTs on the acquisition device are automatically created and
initialized when calling the Create method. You can manipulate the LUT through the methods in the SapLut
Class, and reprogram it using the ApplyLut method.
Valid values for the lutIndex argument are from 0 to the value returned by the GetNumLut method, minus 1.
GetLut returns NULL if the current acquisition device does not support lookup tables.
Demo/Example Usage
Grab LUT Demo

SapAcquisition::GetNumLut
int GetNumLut();
Remarks
Gets the number of available acquisition look-up tables, where a value of 0 means that the current acquisition
device has no LUTs. The returned value is only meaningful after you call the Create method.
Demo/Example Usage
Grab LUT Demo

SapAcquisition::GetNumPlanarInputs
int GetNumPlanarInputs();
Remarks
Gets the number of cameras used for acquiring into vertical planar buffers, where a value of 1 means that

26 • Basic Class Reference Sapera LT ++ Programmer's Manual

planar mode is disabled. All cameras must be synchronized together. The returned value is only meaningful
after you call the Create method.
Demo/Example Usage
Not available

SapAcquisition::GetParameter, SapAcquisition::SetParameter
BOOL GetParameter(int param, void *pValue);
BOOL SetParameter(int param, int value, BOOL updateNow = TRUE);
BOOL SetParameter(int param, void *pValue, BOOL updateNow = TRUE);
Parameters
param Low-level Sapera C library parameter to read or write
paramValue Pointer to parameter value to read back or to write
value New parameter value to write
updateNow Allows delayed updating of acquisition parameters
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
These methods allow direct read/write access to low-level Sapera C library parameters for the acquisition
module. The GetParameter method needs a pointer to a memory area large enough to receive the parameter
value that is usually a 32-bit integer. The first form of SetParameter accepts a 32-bit value for the new value.
The second form takes a pointer to the new value, and is required when the parameter uses more than 32-bits
of storage.
By default, updateNow is TRUE, therefore calling SetParameter programs the acquisition hardware with the
new value immediately. However, some parameters should not be set individually, as this may result in
inconsistencies and error conditions in the acquisition resource.
If updateNow is FALSE, new parameter values are accumulated internally. The next time SetParameter is
called with updateNow set to TRUE, all the new values are sent in one operation to the acquisition hardware,
thus avoiding the problems just described.
Note that you will rarely need to use these methods. You should first make certain that what you need is not
already supported by the SapAcquisition Class. Also, directly setting parameter values may interfere with the
correct operation of the class.
See the Sapera LT Acquisition Parameters Reference Manual for a description of all parameters and their
possible values.
Demo/Example Usage
Bayer Demo, FlatField Demo, Sequential Grab Demo

SapAcquisition::GetPlanarInputs, SapAcquisition::SetPlanarInputs
BOOL GetPlanarInputs(BOOL *pCamEnable);
BOOL SetPlanarInputs(BOOL *pCamEnable, int numCameras);
Parameters
pCamEnable Camera configuration array, must have at least 32 entries
numCameras Number of cameras to configure for planar acquisition
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets/sets the current configuration for synchronous acquisition into vertical planar buffers, where all cameras
are synchronized together.
Individual entries in the pCamEnable array are set to TRUE if the corresponding camera is enabled for planar
acquisition; otherwise, they are set to FALSE. The entry at index 0 in pCamEnable corresponds to the first
camera, the entry at index 1 corresponds to the second camera, and so on. If planar mode is disabled, then
only the entry at index 0 is set.
You can only call GetPlanarInputs and SetPlanarInputs after the Create method.
Demo/Example Usage

Sapera LT ++ Programmer's Manual Basic Class Reference • 27

Not available

SapAcquisition::GetSerialPortName
BOOL GetSerialPortName(char *serialPortName);
Parameters
serialPortName Memory area large enough to receive the text for the serial port name (at least 64 bytes)
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the name of the serial port attached to the current acquisition device.
You can only call GetSerialPortName after the Create method.
Demo/Example Usage
Not available

SapAcquisition::GetSignalStatus
BOOL GetSignalStatus(SapAcquisition::SignalStatus signalStatus, BOOL *pIsActive);
BOOL GetSignalStatus(SapAcquisition::SignalStatus *pSignalStatus,
SapAcqCallback pCallback = NULL, void *pContext = NULL);
Parameters
signalStatus Combination of status signals to inquire. See the IsSignalStatusAvailable method for a list of

possible values.
pIsActive Set upon return to TRUE if the specified status signals have been detected, FALSE otherwise
pSignalStatus Set upon return to the combination of detected status signals. See the

IsSignalStatusAvailable method for a list of possible values.
pCallback Application callback function to be called each time the combination of detected signal status

changes.
The callback function must be declared as:
void MyCallback(SapAcqCallbackInfo *pInfo);

pContext Optional pointer to an application context to be passed to the callback function. If pCallback
is NULL, this parameter is ignored.

Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Reports the status of input signals connected to the acquisition device. Use the first form of GetSignalStatus
for a one-time inquiry. Since many signals may be detected at the same time, values are usually combined
together using a bitwise OR operation.
The second form allows asynchronous notification of application code whenever the combination of status
signals changes. This may happen, for example, when an input cable is accidentally disconnected. First call the
method as follows:
GetSignalStatus(¤tStatus, MyCallback, &myContext);
This first reads the current value of the signal status. An internal mechanism then periodically checks for signal
status changes, and notifies the application program using the callback function. You must call GetSignalStatus
again with a NULL argument to disable the application callback function:
GetSignalStatus(¤tStatus, NULL);
Demo/Example Usage
Bayer Demo, Dual Acquisition Demo, FlatField Demo, Grab Demo, Sequential Grab Demo

SapAcquisition::GetTimeStampBase, SapAcquisition::SetTimeStampBase
TimeStampBase GetTimeStampBase;
BOOL SetTimeStampBase(TimeStampBase timeStampBase);
Parameters
timeStampBase SapAcquisition::TimeStamp100NanoSec The time base is in 100 nano seconds.

28 • Basic Class Reference Sapera LT ++ Programmer's Manual

 SapAcquisition::TimeStampFrameValid The time base is in frame valid signals
received.

 SapAcquisition::TimeStampLineTrigger The time base is in external line trigger or
shaft encoder pulse (after drop/multiply
operation).

 SapAcquisition::TimeStampLineValid The time base is in line valid signals received.
 SapAcquisition::TimeStampMicroSec The time base is in micro seconds.
 SapAcquisition::TimeStampMilliSec The time base is in milli seconds.
 SapAcquisition::TimeStampNanoSec The time base is in nano seconds.
 SapAcquisition::TimeStampNone Time base is not available.
 SapAcquisition::TimeStampPixelClock The time base is in camera pixel clock.
 SapAcquisition::TimeStampShaftEncoder The time base is in external line trigger or

shaft encoder pulse (before drop/multiply
operation).

Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets/sets the acquisition device timestamp base units.
Demo/Example Usage
Sequential Grab Demo

SapAcquisition::IsCapabilityValid
BOOL IsCapabilityValid(int cap);
Parameters
cap Low-level Sapera C library capability to be checked
Return Value
Returns TRUE if the capability is supported, FALSE otherwise
Remarks
Checks for the availability of a low-level Sapera C library capability for the acquisition module. Call this method
before GetCapability to avoid invalid or not available capability errors.
Note that thi smethod is rarely needed. The SapAcquisition class already uses important capabilities internally
for self-configuration and validation.
See the Sapera LT Acquisition Parameters Reference Manual for a description of all capabilities and their
possible values.
Demo/Example Usage
Not available

SapAcquisition::IsColorConversionAvailable
BOOL IsColorConversionAvailable();
Remarks
Gets availability of hardware-based color conversion. You can only call IsColorConversionAvailable after the
Create method.
Demo/Example Usage
ColorConverions Demo, FlatField Demo

SapAcquisition::IsFlatFieldAvailable
BOOL IsFlatFieldAvailable();
Remarks
Gets availability of hardware-based flat-field correction. You can only call IsFlatFieldAvailable after the Create
method.

Sapera LT ++ Programmer's Manual Basic Class Reference • 29

Demo/Example Usage
FlatField Demo

SapAcquisition::IsImageFilterAvailable
BOOL IsImageFilterAvailable();
Remarks
Gets availability of hardware-based image filter. You can only call IsImageFilterAvailable after the Create
method.
Demo/Example Usage
See SapClassGui::CimageFilterEditorDlg

SapAcquisition::IsImageFilterEnabled
BOOL IsImageFilterEnabled();
Remarks
Sets the enable state of the hardware acquisition image filter. To check if image filter is supported by the
acquisition device use the SapAcquisition::IsImageFilterAvailable.
Demo/Example Usage
See SapClassGui::CimageFilterEditorDlg

SapAcquisition::IsLutEnabled
BOOL IsLutEnabled();
Remarks
Gets the current LUT enable value. The initial value for this attribute is FALSE. It is then set according to the
current the acquisition device value when calling the Create method.
Demo/Example Usage
Not available

SapAcquisition::IsParameterValid
BOOL IsParameterValid(int param);

Parameters
param Low-level Sapera C library parameter to be checked
Return Value
Returns TRUE if the parameter is supported, FALSE otherwise
Remarks
Checks for the availability of a low-level Sapera C library parameter for the acquisition module. Call this
method before GetParameter to avoid invalid or not available parameter errors.
Note tha this method is rarely needed. The SapAcquisition class already uses important parameters internally
for self-configuration and validation.
See the Sapera LT Acquisition Parameters Reference Manual for a description of all parameters and their
possible values.
Demo/Example Usage
FlatField Demo

SapAcquisition::IsSignalStatusAvailable
BOOL IsSignalStatusAvailable();
BOOL IsSignalStatusAvailable(SapAcquisition::SignalStatus signalStatus);
Parameters
signalStatus Status signal to inquire. One or more of the following values may be ORed together.
 SapAcquisition::SignalNone No signal
 SapAcquisition::SignalHSyncPresent Horizontal sync signal (analog video source) or line

30 • Basic Class Reference Sapera LT ++ Programmer's Manual

valid (digital video source)
 SapAcquisition::SignalVSyncPresent Vertical sync signal (analog video source) or frame

valid (digital video source)
 SapAcquisition::SignalPixelClkPresent / Pixel clock signal. For CameraLink devices, this

status returns true if a clock signal is detected on the
base cable.

 SapAcquisition::SignalPixelClk1Present

 SapAcquisition::SignalPixelClk2Present Pixel clock signal. For CameraLink devices, this
status returns true if a clock signal is detected on the
medium cable.

 SapAcquisition::SignalPixelClk3Present Pixel clock signal. For CameraLink devices, this
status returns true if a clock signal is detected on the
full cable.

 SapAcquisition::SignalPixelClkAllPresent Pixel clock signal. For Camera Link devices, true if all
required pixel clock signals have been detected by
the acquisition device based on the CameraLink
configuration selected.

 SapAcquisition::SignalChromaPresent Color burst signal (valid for NTSC and PAL)
 SapAcquisition::SignalHSyncLock Successful lock to an horizontal sync signal, for an

analog video source
 SapAcquisition::SignalVSyncLock Successful lock to a vertical sync signal, for an

analog video source
 SapAcquisition::SignalPowerPresent Power is available for a camera. This does not

necessarily mean that power is used by the camera,
it only indicates that power is available at the
camera connector, where it might be supplied from
the board PCI bus or from the board PC power
connector. The returned value value is FALSE if the
circuit fuse is blown, therefore power cannot be
supplied to any connected camera.

 SapAcquisition::SignalPoCLActive Power to the camera is present on the Camera Link
cable

 SapAcquisition::SignalPixelLinkLock Lane lock signal. For HSLink and CLHS devices, true
if all required lane lock signals have been detected
by the acquisition device based on the HSLink or
CLHS configuration selected.

Return Value
Returns TRUE if the acquisition device can detect the specified status signals, FALSE otherwise
Remarks
Reports the availability of the status of input signals connected to the acquisition device. Use the first form of
IsSignalStatusAvailable to inquire about all input signals. Use the second form to narrow the inquiry down to
specific signals only.
Demo/Example Usage
Bayer Demo, Dual Acquistion Demo, FlatField Demo, Grab Demo, Sequential Grab Demo

SapAcquisition::IsTimeStampAvailable
BOOL IsTimeStampAvailable();
Return Value
Returns TRUE if the acquisition device has a hardware-based timestamp, FALSE otherwise
Remarks
Reports the availability of a hardware timestamp on the acquisition device. In general, a hardware timestamp
is more accurate than one associated with a buffer transfer event to the host. The timestamp is retrieved from
a buffer using SapBuffer::GetCounterStamp.
Demo/Example Usage
Sequential Grab Demo

SapAcquisition::IsWhiteBalanceAvailable

Sapera LT ++ Programmer's Manual Basic Class Reference • 31

BOOL IsWhiteBalanceAvailable();
Remarks
Gets availability of hardware-based gain values for white balance control. You can only call
IsWhiteBalanceAvailable after the Create method.
Demo/Example Usage
ColorConverions Demo, FlatField Demo

SapAcquisition::LoadImageFilter
BOOL LoadImageFilter(UINT32 filterIndex, const char *file);
Parameters
filterIndex Filter index into which to load the kernel.
file Image filter kernel file to load.
Remarks
Loads a image filter kernel from file for hardware-based image filtering. The kernel file format uses the .crc.
extension. Use SapAcquisition::SaveImageFilter to save kernels to file.
Demo/Example Usage
See SapClassGui::CimageFilterEditorDlg

SapAcquisition::RegisterCallback
BOOL RegisterCallback(EventType eventType, SapAcqCallback callback, void *context = NULL);
Parameters
eventType Event type. See the SapAcquisition constructor for a list a possible values.
callback Address of a user callback function of the following form:

void MyCallback(SapAcquisitionCallbackInfo* pInfo)
{
}

context Pointer to a user storage (that is, variable, structure, buffer, etc). Can be NULL.
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Registers an event by associating a callback function for the specified type. When the event occurs in the
acquisition device, this callback function is called. It provides information on the corresponding event using a
SapAcqCallbackInfo object. Refer to this class for more details.
The context pointer is also returned by the callback function, allowing for the of exchange application specific
information.
Example
void MyCallback(SapAcqCallbackInfo* pInfo)
{
 // Access information using functions of SapAcqCallbackInfo class
 // ...
}

main()
{
 // ...
 acq.RegisterCallback(“FeatureValueChanged”, MyCallback, NULL);
 // ...
 acq.UnregisterCallback(“FeatureValueChanged”);
 // ...
}
Demo/Example Usage
Grab Console example

SapAcquisition::ResetTimeStamp
BOOL ResetTimeStamp();
Return Value

32 • Basic Class Reference Sapera LT ++ Programmer's Manual

Returns TRUE if succesful, FALSE otherwise
Remarks
Resets the acquisition hardware timestamp counter to zero.
Demo/Example Usage
Not available

SapAcquisition::SaveImageFilter
BOOL SaveImageFilter(UINT32 filterIndex, const char *file);
Parameters
filterIndex Filter index into which to load the kernel.
file Image filter kernel file to load.
Remarks
Saves a hardware-based image filter kernel to file. The kernel file format uses the .crci extension. Use
SapAcquisition::LoadImageFilter to load previously saved kernels.
Demo/Example Usage
See SapClassGui::CimageFilterEditorDlg

SapAcquisition::SaveParameters
BOOL SaveParameters(const char *configFile);
Parameters
configFile Name of the acquisition configuration file (CCF) for saving camera and frame grabber related

acquisition parameters
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Saves the current values of acquisition module parameters to the specified file.
Demo/Example Usage
Not available

SapAcquisition::SetCallbackInfo
BOOL SetCallbackInfo(SapAcqCallback pCallback, void *pContext = NULL);
Remarks
Sets the application callback method for acquisition events and the associated context.
You can only call SetCallbackInfo before the Create method. See the SapAcquisition constructor for more
details.
Demo/Example Usage
Not available

SapAcquisition::SoftwareTrigger
BOOL SoftwareTrigger(SapAcquisition::SoftwareTriggerType triggerType);
Parameters
triggerType Trigger type may be one of the following values
 SapAcquisition::SoftwareTriggerExtl External trigger
 SapAcquisition::SoftwareTriggerExtFrame External frame trigger
 SapAcquisition::SoftwareTriggerExtLine External line trigger
Return Value
Returns TRUE if successful, FALSE otherwise.
Remarks
Simulates a trigger to the acquisition device. Use SoftwareTrigger for testing purposes when the actual
hardware trigger is not available.

Sapera LT ++ Programmer's Manual Basic Class Reference • 33

Note that in order for this feature to work, external trigger must be enabled. This can be done either through
CamExpert or by calling the SetParameter method for the CORACQ_PRM_EXT_TRIGGER_ENABLE parameter.
Also, this feature may not be implemented on the current acquisition device. To find out if it is, call the
GetCapability method for the CORACQ_CAP_SOFTWARE_TRIGGER capability.
Demo/Example Usage
Not available

SapAcquisition::UnregisterCallback
BOOL UnregisterCallback(const char* eventName);
BOOL UnregisterCallback(int eventIndex);
Parameters
eventName Event name. See the acquisition device User’s Manual for the list of supported events.
eventIndex Index of the event. All indices in the range from 0 to the value returned by the

GetEventCount method, minus 1, are valid.
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Unregisters a callback function on the event associated with a specified name or index. Use this function in a
loop to unregister all the callback functions previously registered.
Example
// Unregisters all the callback functions
//
UINT32 eventCount, eventIndex;
acq.GetEventCount(&eventCount);
for (eventIndex = 0; eventIndex < eventCount; eventIndex++)
{
 BOOL isRegistered;
 acq.IsCallbackRegistered(eventIndex, &isRegistered);
 if (isRegistered)
 {
 acq.UnregisterCallback(eventIndex);
 }
}
Demo/Example Usage
Grab Console Example

34 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapAcqCallbackInfo
The SapAcqCallbackInfo Class acts as a container for storing all arguments to the callback function for the
SapAcquisition Class.

#include <SapClassBasic.h>

SapAcqCallbackInfo Class Members
Construction
SapAcqCallbackInfo Class constructor
Attributes
GetAcquisition Gets the SapAcquisition object associated with acquisition events or signal status

reporting
GetContext Gets the application context associated with acquisition events or signal status

reporting
GetCustomData Gets the data associated with a custom event
GetCustomSize Gets the size of the custom data returned by GetCustomData
GetEventType Gets the acquisition events that triggered the call to the application callback
GetEventCount Gets the current count of acquisition events
GetEventInfo Gets the low-level Sapera handle of the event info resource.
GetSignalStatus Gets the input signal status that triggered the call to the application callback
GetGenericParam0 Gets generic parameters supported by some events
GetGenericParam1
GetGenericParam2
GetGenericParam3
GetAuxiliaryTimestamp Gets the auxiliary timestamp associated with acquisition events or signal status

reporting
GetHostTimestamp Gets the host timestamp associated with acquisition events or signal status

reporting

SapAcqCallBackInfo Member Functions
The following are members of the SapAcqCallbackInfo Class.

SapAcqCallbackInfo::GetAcquisition
SapAcquisition* GetAcquisition();
Remarks
Gets the SapAcquisition object context associated with acquisition events or signal status reporting. See the
SapAcquisition constructor for more details.
Demo/Example Usage
Not available

SapAcqCallbackInfo::GetAuxiliaryTimestamp
BOOL GetAuxiliaryTimestamp(UINT64 *auxTimestamp);
Parameters
auxTimestamp Address of a pointer to receive the auxiliary timestamp
Remarks
Gets the auxiliary timestamp associated with acquisition events or signal status reporting. When a registered
event is raised, the auxiliary timestamp is generated internally by the device (to retrieve the host timestamp
generated by the host CPU see the SapAcqCallbackInfo::GetHostTimestamp function).

Sapera LT ++ Programmer's Manual Basic Class Reference • 35

Note that not all acquisition devices support this timestamp. See the device User’s Manual for more
information on the availability of this value.
Demo/Example Usage
Not available

SapAcqCallbackInfo::SapAcqCallbackInfo
SapAcqCallbackInfo(
 SapAcquisition* pAcq,
 void* pContext,
 SapAcquisition::EventType eventType,
 int eventCount
);
SapAcqCallbackInfo(
 SapAcquisition* pAcq,
 void* pContext,
 SapAcquisition::SignalStatus signalStatus
);
SapAcqCallbackInfo(
 SapAcquisition *pAcq,
 void *pContext,
 COREVENTINFO eventInfo
);
Parameters
pAcq SapAcquisition object that calls the callback function.
pContext Pointer to the application context.
eventType Combination of acquisition events. See the SapAcquisition constructor for a list a possible

values.
eventCount Current acquisition event count.
signalStatus Combination of signal status values. See SapAcquisition::IsSignalStatusAvailable for a list a

possible values.
eventInfo Low-level Sapera handle of the event info resource
Remarks
SapAcquisition objects create an instance of this class before each call to the acquisition callback method in
order to combine all function arguments into one container.
SapAcquisition uses this class for two different purposes. The first case applies to reporting acquisition events.
The pContext parameter takes the value specified in the SapAcquisition class constructor; eventType identifies
the combination of events that triggered the call to the callback function; and eventCount increments by one
at each call, starting at 1.
The second case applies to reporting signal status changes. The pContext parameter takes the value specified
in the SapAcquisition::GetSignalStatus method, and signalStatus identifies the new signal status that triggered
the call to the callback function.
Demo/Example Usage
Bayer Demo, Dual Acquisition Demo, FlatField Demo, Grab Demo, Sequential Grab Demo

SapAcqCallbackInfo::GetContext
void* GetContext();
Remarks
Gets the application context associated with acquisition events or signal status reporting. See the
SapAcquisition constructor and SapAcquisition::GetSignalStatus for more details.
Demo/Example Usage
Not available

SapAcqCallbackInfo::GetCustomData
BOOL GetCustomData(void** customData);
Parameters

36 • Basic Class Reference Sapera LT ++ Programmer's Manual

customData Address of a pointer to receive the address to the data buffer
Remarks
Gets the address of a buffer containing the data associated with a custom event. You must not free the buffer
after you are finished using it.
This functionality is usually not supported, except for special versions of certain acquisition devices. See the
device User’s Manual for more information on availability.
Example
void MyCallback(SapAcqCallbackInfo* pInfo)
{
 // Retrieve the data buffer
 void* pCustomData;
 pInfo->GetCustomData(&pCustomData);

 // Use the data buffer
 //...
}
Demo/Example Usage
Not available

SapAcqCallbackInfo::GetCustomSize
BOOL GetCustomSize(int* customSize);
Parameters
customSize Address of an integer to return the value
Remarks
Gets the size of the custom data returned by the GetCustomData method.
Demo/Example Usage
Not available

SapAcqCallbackInfo::GetEventCount
int GetEventCount();
BOOL GetEventCount(int *eventCount);
Parameters
eventCount Pointer to the variable to hold the event count
Remarks
Gets the current count of acquisition events. The initial value is 1 and increments after every call to the
acquisition callback function.
Demo/Example Usage
Not available

SapAcqCallbackInfo::GetEventInfo
COREVENTINFO GetEventInfo();
Remarks
Gets the low-level Sapera handle of the event info resource. You should not use this method unless you need a
handle to the low-level C API to access some functionality not exposed in the C++ API.
Demo/Example Usage
Not available

SapAcqCallbackInfo::GetEventType
SapAcquisition::EventType GetEventType();
BOOL GetEventType(SapAcquisition::EventType *eventType);
Parameters
eventType Pointer to the integer variable to hold the event type
Remarks

Sapera LT ++ Programmer's Manual Basic Class Reference • 37

Gets the combination of acquisition events that triggered the call to the application callback. Since it is
possible for multiple events to trigger one such call, GetEventType may actually return a combination of many
events, using a bitwise OR operator. See the SapAcquisition constructor for the list of possible values.
Note that, when the event type is SapAcquisition::EndOfLine or SapAcquisition::EndOfNLines, the line number
for which the acquisition callback function is called is not returned through this function, the corresponding bits
are always set to 0.
Demo/Example Usage
Not available

SapAcqCallbackInfo::GetGenericParam0
SapAcqCallbackInfo::GetGenericParam1
SapAcqCallbackInfo::GetGenericParam2
SapAcqCallbackInfo::GetGenericParam3
BOOL GetGenericParam0(int* paramValue);
BOOL GetGenericParam1(int* paramValue);
BOOL GetGenericParam2(int* paramValue);
BOOL GetGenericParam3(int* paramValue);
Parameters
paramValue Address of an integer where the parameter value is written
Remarks
Gets any of the four generic parameters supported by some events. You should use aliases instead when they
are available. For example, the ‘Feature Info Changed’ event of the SapAcquistion class uses the
GetFeatureIndex method as an alias to GetGenericParam0. See the acquisition device User’s Manual for a list
of events using generic parameters.
Demo/Example Usage
Not available

SapAcqCallbackInfo::GetHostTimestamp
BOOL GetHostTimestamp(UINT64 *hostTimestamp);
Parameters
hostTimestamp Address of a pointer to receive the host timestamp
Remarks
Gets the host timestamp associated with acquisition events or signal status reporting. When a registered event
is raised, the host timestamp is retrieved from the host CPU at the kernel level before the callback function
executes at the application level.
Under Windows, the value corresponding to the high-resolution performance counter is directly returned. Refer
to the QueryPerformanceCounter and QueryPerformanceFrequency functions in the Windows API
documentation for more details on how to convert this value to time units.
Note that not all acquisition devices support this timestamp. See the device User’s Manual for more
information on the availability of this value.
Demo/Example Usage
Not available

SapAcqCallbackInfo::GetSignalStatus
SapAcquisition::SignalStatus GetSignalStatus();
Remarks
Gets the input signal status that triggered the call to the application callback. See
SapAcquisition::GetSignalStatus for the list of possible values.
Demo/Example Usage
Not available

38 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapAcqDevice

The SapAcqDevice Class provides the functionality for reading/writing features from/to devices such as Teledyne
DALSA GigE Vision cameras. The class also contains functions for sending commands and registering events to
devices.

This class is used as a source transfer node to allow data transfers from an acquisition device to another transfer
node, such as a buffer.

Note: Frame-grabber devices are not supported by this class. The SapAcquisition class must be used in such cases.

#include <SapClassBasic.h>

SapAcqDevice Class Members
Construction
SapAcqDevice Class constructor
Create Allocates the low-level Sapera resources
Destroy Releases the low-level Sapera resources
General Parameters
GetConfigFile, Gets/sets the name of the acquisition configuration file (CCF)
SetConfigFile
GetReadOnly, Gets/sets whether or not the class has read-only access to the device
SetReadOnly
GetUpdateFeatureMode, Gets/sets the mode by which features are written to the device
SetUpdateFeatureMode
GetLabel Gets a text description of the acquisition device
GetConfigName, Gets/sets the configuration name to be used when saving the device features

using the SaveFeatures method SetConfigName
GetModeName, Gets/sets the mode name to be used when saving the device features using

the SaveFeatures method SetModeName
UpdateLabel Updates the device label.
Parameter Access
IsCapabilityValid Checks for the availability of a low-level Sapera C library capability
GetCapability Gets the value of a low-level Sapera C library capability
IsParameterValid Checks for the availability of a low-level Sapera C library parameter
GetParameter, Gets/sets the value of a low-level Sapera C library parameter
SetParameter
Feature Access
GetFeatureCount Returns the number of features supported by the acquisition device
GetFeatureNameByIndex Returns the name of a feature associated with a specified index
GetFeatureIndexByName Returns the index of a feature associated with a specified name
IsFeatureAvailable Returns whether or not a feature is supported by the acquisition device
GetFeatureInfo Returns information on a feature associated with a specified name or index

Sapera LT ++ Programmer's Manual Basic Class Reference • 39

GetFeatureValue Returns the value of a feature associated with a specified name or index
SetFeatureValue Sets the value of a feature associated with a specified name or index
UpdateFeaturesFromDevice Gets all the features from the acquisition device at once
UpdateFeaturesToDevice Sets all the features to the acquisition device at once
LoadFeatures Loads all the features from a configuration file
SaveFeatures Saves all (or a subset of) features to a configuration file
IsFlatFieldAvailable Gets availability of camera-based flat-field correction
GetCategoryCount Returns the number of unique feature category names
GetCategoryPath Returns the full path name of a unique feature category
Bayer Management
IsRawBayerOutput Returns whether or not the acquisition device output is raw Bayer
Event Management
GetEventCount Returns the number of events supported by the acquisition device
GetEventNameByIndex Returns the name of an event associated with a specified index
GetEventIndexByName Returns the index of an event associated with a specified name
IsEventAvailable Returns whether or not an event is supported by the acquisition device
RegisterCallback Registers a callback function for the event associated with a specified name

or index
UnregisterCallback Unregisters a callback function on the event associated with a specified name

or index
IsCallbackRegistered Returns whether or not a callback function was registered on the event

associated with a specified name or index
File Management
GetFileCount Returns the number of files supported by the acquisition device
GetFileNameByIndex Returns the name of a device file associated with a specified index
GetFileIndexByName Returns the index of a device file associated with a specified name
IsFileAccessAvailable Gets availability of file access by the acquisition device
GetFileProperty Gets a property of a specific file on the acquisition device
WriteFile Writes a file to an acquisition device
ReadFile Reads a file from an acquisition device
DeleteDeviceFile Deletes a file from the acquisition device

SapAcqDevice Member Functions
The following are members of the SapAcqDevice Class.

SapAcqDevice::SapAcqDevice
SapAcqDevice(SapLocation location = SapLocation::ServerSystem, BOOL readOnly = FALSE);
SapAcqDevice(SapLocation location, const char *configFile);
Parameters
location SapLocation object specifying the server where the acquisition device is located and the index

of the acquisition device on this server.
readOnly TRUE to force read-only access to the device. If another application is already accessing the

device (through this class) use this function to obtain read-only access to the device. To know
what functions of the SapAcqDevice class are accessible with this option, refer to the function
documentation.

configFile Name of the acquisition configuration file (CCF) that describes all the acquisition parameters.
A CCF file can be created using the CamExpert utility.

Remarks
The SapAcqDevice constructor does not actually create the low-level Sapera resources. To do this, you must

40 • Basic Class Reference Sapera LT ++ Programmer's Manual

call the SapAcqDevice::Create method.
The first constructor is used when no configuration file is required. In such a case the default parameters of
the acquisition device are used. You can optionally obtain read-only access to the device. This option is useful
only when another application has already obtained a read-write access to the same device.
The second constructor allows you to load a configuration file (CCF) previously created by the CamExpert tool
or by your own application.
The SapAcqDevice object is used only for storing the acquisition device parameters. To acquire data, use the
SapTransfer Class (or one of its derived classes) and pass the SapAcqDevice object as a parameter for the
constructor. SapTransfer then handles the actual data transfer. You can also use the SapAcqDeviceToBuf
specialized transfer class class to simplify this task.
Demo/Example Usage
GigE Camera Demo, GigE FlatField Demo, GigE Sequential Grab Demo, Camera Events Example, Camera
Features Example, Find Camera Example, GigE Auto-White Balance Example, GigE Camera LUT Example, Grab
CameraLink Example, Grab Console Example

SapAcqDevice::Create
BOOL Create();
Return Value
Returns TRUE if successful, FALSE otherwise.
Remarks
Creates all the low-level Sapera resources needed by the acquisition object. Always call this method before
SapTransfer::Create.
Demo/Example Usage
GigE Camera Demo, GigE FlatField Demo, GigE Sequential Grab Demo, Camera Events Example, Camera
Features Example, Camera Files Example, Find Camera Example, GigE Auto-White Balance Example, GigE
Camera LUT Example, Grab CameraLink Example, Grab Console Example

SapAcqDevice::DeleteDeviceFile
BOOL DeleteDeviceFile(const char *deviceFileName);
BOOL DeleteDeviceFile(int deviceFileIndex);
Parameters
deviceFileName Name of the device file. See the acquisition device User’s Manual for the list of supported

files.
deviceFileIndex Index of the file. All indices in the range from 0 to the value returned by the GetFileCount

method, minus 1, are valid.
Return Value
Returns TRUE if successful, FALSE otherwise.
Remarks
Deletes the specified file on the device.
To find out which device files names are available, use the GetFileCount function together with the
GetFileNameByIndex function.
In order to use this function with an deviceFileIndex argument, you first need to call the GetFileIndexByName
function to retrieve the index corresponding to the file you want to delete.
Demo/Example Usage
Camera Files Example

SapAcqDevice::Destroy
BOOL Destroy();
Return Value
Returns TRUE if successful, FALSE otherwise.
Remarks
Destroys all the low-level Sapera resources needed by the acquisition object. Always call this method after
SapTransfer::Destroy.

Sapera LT ++ Programmer's Manual Basic Class Reference • 41

Demo/Example Usage
GigE Camera Demo, GigE FlatField Demo, GigE Sequential Grab Demo, Camera Events Example, Camera
Features Example, Camera Files Example, Find Camera Example, GigE Auto-White Balance Example, GigE
Camera LUT Example, Grab CameraLink Example, Grab Console Example

SapAcqDevice::GetCapability
BOOL GetCapability(int cap, void *pValue);
Parameters
cap Low-level Sapera C library capability to read
pValue Pointer to capability value to read back
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
This method allows direct read access to low-level Sapera C library capabilities for the acquisition device
module. It needs a pointer to a memory area large enough to receive the capability value, which is usually a
32-bit integer.
Note that this method is rarely needed. The SapAcqDevice class already uses important capabilities internally
for self-configuration and validation.
See the Sapera LT Basic Modules Reference Manual for a description of all capabilities and their possible
values.
Demo/Example Usage
Not available

SapAcqDevice::GetCategoryCount
BOOL GetCategoryCount(int *categoryCount);
Parameters
categoryCount Number of feature categories available on the acquisition device
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Returns the number of unique feature category names. This is equivalent to getting the information for all
available features (by calling GetFeatureCount followed by GetFeatureInfo), retrieving the category name for
each (by calling SapFeature::GetCategory), and then counting the unique category names.
After calling this function, you can call GetCategoryPath to retrieve full path names for individual features,
using a category index which can be any value in the range [0... categoryCount -1].
Demo/Example Usage
Not available

SapAcqDevice::GetCategoryPath
BOOL GetCategoryPath(int categoryIndex, char* path, int pathSize);
Parameters
categoryIndex Index of the category. All indices from 0 to the value returned by the GetCategoryCount

function, minus 1, are valid.
path Returns the full path name of the category associated with the specified index
pathSize Size (in bytes) of the buffer pointed to by path
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Returns the full path name of a feature category at a specified index, following a call to the GetCategoryCount
function to get the total number of categories. The returned path name is formatted according to the following
rules:
All path names begin with “\Root” or “\SaperaRoot”

42 • Basic Class Reference Sapera LT ++ Programmer's Manual

Top level categories are returned as “\Root\CategoryName”
Second level categories are returned as “\Root\CategoryName\SubCategoryName”
and so on…
This allows parsing of category path names so that these can be shown using a hierarchical view in a GUI
based application.
Demo/Example Usage
Not available

SapAcqDevice::GetConfigFile, SapAcqDevice::SetConfigFile
const char* GetConfigFile();
BOOL SetConfigFile(const char* configFile);
Parameters
configFile Name of the configuration file
Remarks
Gets/sets the name of the acquisition configuration file (CCF) to be loaded at creation, that is, when the Create
method is called.
You normally set the initial value for this attribute in the SapAcqDevice constructor. If you use the default
constructor, then this value is NULL.
You can only call SetConfigFile before the Create method.
Demo/Example Usage
GigE Camera Demo, GigE FlatField Demo, GigE Sequential Grab Demo

SapAcqDevice::GetConfigName, SapAcqDevice::SetConfigName
const char* GetConfigName();
BOOL SetConfigName(const char* configName);
Parameters
configName Name of the configuration to be written to the CCF file. The length of the string must not

exceed 64 characters.
Remarks
Gets/sets the configuration name to be used when saving the device features using the SaveFeatures method.
It is then possible to uniquely identify different configuration files when the company name, camera model
name, and mode name are the same. For example, ‘High Contrast’ might be used as configuration name.
When loading a configuration file using the LoadFeatures method, this parameter is automatically updated.
Demo/Example Usage
Not available

SapAcqDevice::GetEventCount
BOOL GetEventCount(int *eventCount);
Parameters
eventCount Number of events supported by the acquisition device
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Returns the number of events supported by the acquisition device. Devices do not necessarily support the
same event set. For instance you can use this function to retrieve the number of events and then get the name
of those event using GetEventNameByIndex, using an event index which can be any value in the range 0 to
the value returned by this function, minus 1.
Demo/Example Usage
Camera Events Example

SapAcqDevice::GetEventIndexByName

Sapera LT ++ Programmer's Manual Basic Class Reference • 43

BOOL GetEventIndexByName(const char* eventName, int* eventIndex);
Parameters
eventName Event name. See the acquisition device User’s Manual for the list of supported events.
eventIndex Returns the index of the event associated with the specified name
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Returns the index of an event associated with a specified name. This function is useful in building a list of
indexes associated with the event names you commonly use. You can then access those events by index to
increase performance.
Demo/Example Usage
Not available

SapAcqDevice::GetEventNameByIndex
BOOL GetEventNameByIndex(int eventIndex, char* eventName, int eventNameSize);
Parameters
eventIndex Index of the event. All indices in the range from 0 to the value returned by the

GetEventCount method, minus 1, are valid.
eventName Returns the name of the event associated with the specified index
eventNameSize Size (in bytes) of the buffer pointed to by eventName
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Returns the name of an event associated with a specified index. This method is especially useful when
converting an event index (retrieved from your callback information) to the corresponding name.
Demo/Example Usage
Camera Events Example

SapAcqDevice::GetFeatureCount
BOOL GetFeatureCount(int* featureCount);
Parameters
featureCount Number of features supported by the acquisition device
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Returns the number of features supported by the acquisition device. Different devices do not necessarily
support the same feature set. You can get information about each feature by calling the GetFeatureInfo
method, using an index which can be any value in the range from 0 to the value returned by this method,
minus 1.
The returned value is only meaningful after calling the Create method.
Demo/Example Usage
Camera Events Example, Camera Features Example

SapAcqDevice::GetFeatureIndexByName
BOOL GetFeatureIndexByName(const char* featureName, int* featureIndex);
Parameters
featureName Name of the feature. See the acquisition device User’s Manual for the list of supported

features.
featureIndex Returns the index of the feature associated with the specified name
Return Value

44 • Basic Class Reference Sapera LT ++ Programmer's Manual

Returns TRUE if successful, FALSE otherwise
Remarks
Returns the index of a feature associated with a specified name. This function is useful in building a list of
indexes associated with the feature names you commonly use. Then you can access those features by index to
increase performance.
Demo/Example Usage
Not available

SapAcqDevice::GetFeatureInfo
BOOL GetFeatureInfo(const char* featureName, SapFeature* feature);
BOOL GetFeatureInfo(int featureIndex, SapFeature* feature);
Parameters
featureName Name of the feature. See the acquisition device User’s Manual for the list of supported

features.
featureIndex Index of the feature. All indices from 0 to the value returned by the GetFeatureCount

method, minus 1, are valid.
Feature Pointer to a SapFeature object to store the feature information
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Returns information on a feature associated with a specified name or index. All information about the feature
is stored in a SapFeature object. This object contains the attributes of the feature such as name, type, range,
and so forth. See the SapFeature class for more details.
Note that you must call the Create method for the SapFeature object before calling this method.
Demo/Example Usage
Camera Events Example, Camera Features Example, Camera Files Example, GigE Auto-White Balance
Example, Grab Console Example

SapAcqDevice::GetFeatureNameByIndex
BOOL GetFeatureNameByIndex(int featureIndex, char* featureName, int featureNameSize);
Parameters
featureIndex Index of the feature. All indices from 0 to the value returned by the GetFeatureCount

method, minus 1, are valid.
featureName Returns the name of the feature associated with the specified index
featureNameSize Size (in bytes) of the buffer pointed to by featureName
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Returns the name of a feature associated with a specified index. For instance you can use this function to
display the names of all features supported by the device.
Demo/Example Usage
Camera Features Example

SapAcqDevice::GetFeatureValue
bool GetFeatureValue(const char* featureName, INT32* featureValue);
bool GetFeatureValue(const char* featureName, UINT32* featureValue);
bool GetFeatureValue(const char* featureName, INT64* featureValue);
bool GetFeatureValue(const char* featureName, UINT64* featureValue);
bool GetFeatureValue(const char* featureName, float* featureValue);
bool GetFeatureValue(const char* featureName, double* featureValue);
bool GetFeatureValue(const char* featureName, BOOL* featureValue);
bool GetFeatureValue(const char* featureName, char* featureString, int featureStringSize);
bool GetFeatureValue(const char* featureName, SapBuffer* featureBuffer);
bool GetFeatureValue(const char* featureName, SapLut* featureLut);

Sapera LT ++ Programmer's Manual Basic Class Reference • 45

bool GetFeatureValue(int featureIndex, INT32* featureValue);
bool GetFeatureValue(int featureIndex, UINT32* featureValue);
bool GetFeatureValue(int featureIndex, INT64* featureValue);
bool GetFeatureValue(int featureIndex, UINT64* featureValue);
bool GetFeatureValue(int featureIndex, float* featureValue);
bool GetFeatureValue(int featureIndex, double* featureValue);
bool GetFeatureValue(int featureIndex, BOOL* featureValue);
bool GetFeatureValue(int featureIndex, char* featureString, int featureStringSize);
bool GetFeatureValue(int featureIndex, SapBuffer* featureBuffer);
bool GetFeatureValue(int featureIndex, SapLut* featureLut);
Parameters
featureName Name of the feature. See the acquisition device User’s Manual for the list of supported

features.
featureIndex Index of the feature. All indices from 0 to the value returned by the GetFeatureCount

method, minus 1, are valid.
featureValue Returns the value of the specified feature. You must choose the which function overload to

use according to the feature type.
featureString Returns the contents of a string feature
featureStringSize Size (in bytes) of the buffer pointed to by featureString
featureBuffer SapBuffer object for retrieving a buffer feature
featureLut SapLut object for retrieving a LUT feature
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Returns the value of a feature associated with a specified name or index.
To find out which overloaded function to use, you must obtain the type of the feature by calling the
GetFeatureInfo method, followed by SapFeature::GetType. In the case of a class type (such as SapBuffer or
SapLut), you must call the Create method for that object before calling GetFeatureValue. To find out if the
feature is readable, use SapFeature::GetAccessMode.
Note that, except for unitless features, each feature has its specific native unit, for example, milliseconds, KHz,
tenth of degree, etc. This information is obtained through the SapFeature::GetSiUnit and
SapFeature::GetSiToNativeExp10 functions.
When dealing with enumerations, it is recommended to always use the string representation to read the value.
The actual integer value corresponding to the enumeration string can vary from one acquisition device to
another, but the string representation is guaranteed to always represent the same setting, even across
manufacturers.
Demo/Example Usage
Camera Events Example, Camera Features Example, Camera Files Example, GigE Auto-White Balance
Example, Grab CameraLink Example

SapAcqDevice::GetFileCount
BOOL GetFileCount(int* fileCount);
Parameters
fileCount Number of files supported by the acquisition device
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Returns the number of files supported by the acquisition device. Use the returned value together with the
GetFileNameByIndex function to get a list of supported device file names.
Demo/Example Usage
Camera Files Example

SapAcqDevice::GetFileIndexByName

46 • Basic Class Reference Sapera LT ++ Programmer's Manual

BOOL GetFileIndexByName(const char* fileName, int* fileIndex);
Parameters
fileName Name of the device file. See the acquisition device User’s Manual for the list of supported

files.
fileIndex Returned index of the device file associated with the specified name
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Returns the index of a device file associated with a specified name. This function is useful in building a list of
indexes associated with the device file names you commonly use. You can then access those device files by
index to increase performance.
Demo/Example Usage
Not available

SapAcqDevice::GetFileNameByIndex
BOOL GetFileNameByIndex(int fileIndex, char* fileName, int fileNameSize);
Parameters
fileIndex Index of the device file. All indices in the range from 0 to the value returned by the

GetFileCount method, minus 1, are valid.
fileName Returned name of the device file associated with the specified index
fileSize Size (in bytes) of the buffer pointed to by fileName
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Returns the name of a device file associated with a specified index. Use this function together with the
GetFileCount function to find out which device files names are available.
Demo/Example Usage
Camera Files Example

SapAcqDevice::GetFileProperty
BOOL GetFileProperty(int fileIndex, SapAcqDevice::FileProperty propertyType,
UINT64* filePropertyValue);
BOOL GetFileProperty(const char* fileName, SapAcqDevice::FileProperty propertyType,
UINT64* filePropertyValue);
Parameters
fileIndex Index of the device file. All indices in the range from 0 to the value returned by the

GetFileCount method, minus 1, are valid.
fileName Name of the device file
propertyType Device file property to inquire, can be one of the following:
 SapAcqDevice::FilePropertyAccessMode Access mode for the device file.
 SapAcqDevice::FilePropertySize Device file size, in bytes
filePropertyValue Returned property value.
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Returns the value for the specified property type for the device file. When inquiring the file access mode, the
possible values are:
 SapAcqDevice::FileAccessModeNone

SapAcqDevice::FileAccessModeReadOnly
SapAcqDevice::FileAccessModeWriteOnly

Sapera LT ++ Programmer's Manual Basic Class Reference • 47

SapAcqDevice::FileAccessModeReadWrite
To find out which device files names are available, use the GetFileCount function together with the
GetFileNameByIndex function.
In order to use this function with a fileIndex argument, you first need to call the GetFileIndexByName function
to retrieve the index corresponding to the file you want.
Demo/Example Usage
Camera Files Example

SapAcqDevice::GetLabel
const char* GetLabel();
Remarks
Gets a text description of the acquisition device resource. This attribute is initially set to an empty string. After
a successful call to the Create method, it is composed of the name of the server where the acquisition device
resource is located and the name of this resource: ServerName [ResourceName].
Example: "Genie_HM1400_1 [UserName]"
The part of the label inside the square brackets actually corresponds to the value of the ‘DeviceUserID’
feature, which can be modified by the application. When this happens, the label is automatically updated, and
the application callback function for the SapManager::EventResourceInfoChanged event is invoked (if
registered using the SapManager::RegisterServerCallback function).
Demo/Example Usage
Not available

SapAcqDevice::GetModeName, SapAcqDevice::SetModeName
const char* GetModeName();
BOOL SetModeName(const char* modeName);
Parameters
modeName Name of the camera mode to be written to the CCF file. The length of the string must not

exceed 64 characters.
Remarks
Gets/sets the mode name to be used when saving the device features using the SaveFeatures method. It is
then possible to uniquely identify different modes when the company name and camera model name are the
same. For example, ‘Single-Channel, Free-Running’ might be used as mode name.
When loading a configuration file using the LoadFeatures method, this parameter is automatically updated.
Demo/Example Usage
Not available

SapAcqDevice::GetParameter, SapAcqDevice::SetParameter
BOOL GetParameter(int param, void *pValue);
BOOL SetParameter(int param, int value);
BOOL SetParameter(int param, void *pValue);
Parameters
param Low-level Sapera C library parameter to read or write
paramValue Pointer to parameter value to read back or to write
value New parameter value to write
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
These methods allow direct read/write access to low-level Sapera C library parameters for the acquisition
device module. The GetParameter method needs a pointer to a memory area large enough to receive the
parameter value that is usually a 32-bit integer. The first form of SetParameter accepts a 32-bit value for the
new value. The second form takes a pointer to the new value, and is required when the parameter uses more
than 32-bits of storage.
Note that you will rarely need to use these methods. You should first make certain that what you need is not

48 • Basic Class Reference Sapera LT ++ Programmer's Manual

already supported by the SapAcqDevice Class. Also, directly setting parameter values may interfere with the
correct operation of the class.
See the Sapera LT Acquisition Parameters Reference Manual and Sapera LT Basic Modules Reference Manual
for a description of all parameters and their possible values.
Demo/Example Usage
Not available

SapAcqDevice::GetReadOnly, SapAcqDevice::SetReadOnly
BOOL GetReadOnly();
BOOL SetReadOnly(BOOL readOnly);
Parameters
readOnly TRUE to force read-only access to the device
Remarks
Gets/sets whether or not the class has read-only access to the device. See the SapAcqDevice contructor for
more detail on this option. You can only call SetReadOnly before the Create method.
Demo/Example Usage
Not available

SapAcqDevice::GetUpdateFeatureMode, SapAcqDevice::SetUpdateFeatureMode
UpdateFeatureMode GetUpdateFeatureMode();
BOOL SetUpdateFeatureMode(UpdateFeatureMode mode);
Parameters
mode The mode can be one of the following values:
 SapAcqDevice::UpdateFeatureAuto New feature values are immediately sent to the

acquisition device
 SapAcqDevice::UpdateFeatureManual New feature values are temporarily cached before being

sent to the acquisition device
Remarks
Gets/sets the mode by which features are written to the device. In the automatic mode, every time a feature
value is modified using the SetFeatureValue method, it is immediately sent to the device. In the manual mode,
each feature value is temporarily cached until the UpdateFeaturesToDevice method is called to send all values
to the device at once.
Note, for devices not using the Genie Framework, only the SapAcqDevice::UpdateFeatureAuto mode is
implemented; setting the update mode to SapAcqDevice::UpdateFeatureManual has no effect. Consequently,
the SapAcqDevice::UpdateFeaturesFromDevice and SapAcqDevice::UpdateFeaturesToDevice functions are not
implemented.
Demo/Example Usage
Not available

SapAcqDevice::IsCallbackRegistered
BOOL IsCallbackRegistered(const char* eventName, BOOL* isRegistered);
BOOL IsCallbackRegistered(int eventIndex, BOOL* isRegistered);
Parameters
eventName Name of the event. See the acquisition device User’s Manual for the list of supported events.
eventIndex Index of the event. All indices in the range from 0 to the value returned by the

GetEventCount method, minus 1, are valid.
isRegistered Returns TRUE if a callback function was registered on this event. FALSE otherwise
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Checks whether or not a callback function was registered on the event associated with a specified name or
index. For example, you may use this function in a loop to find out if the callback function associated with the
current event index has to be unregistered.

Sapera LT ++ Programmer's Manual Basic Class Reference • 49

Demo/Example Usage
Camera Events Example, Camera Features Example

SapAcqDevice::IsCapabilityValid
BOOL IsCapabilityValid(int cap);
Parameters
cap Low-level Sapera C library capability to be checked
Return Value
Returns TRUE if the capability is supported, FALSE otherwise
Remarks
Checks for the availability of a low-level Sapera C library capability for the acquisition device module. Call this
method before GetCapability to avoid invalid or not available capability errors.
Note that this method is rarely needed. The SapAcqDevice class already uses important capabilities internally
for self-configuration and validation.
See the Sapera LT Basic Modules Reference Manual for a description of all capabilities and their possible
values.
Demo/Example Usage
Not available

SapAcqDevice::IsEventAvailable
BOOL IsEventAvailable(const char* eventName, BOOL* isAvailable);
Parameters
eventName Name of the event. See the acquisition device User’s Manual for the list of supported events.
isAvailable Returns TRUE if the event is supported by the acquisition device. FALSE otherwise
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Checks whether or not an event is supported by the acquisition device. This function is useful when an
application supports several acquisition devices, each having a different event set.
Demo/Example Usage
GigE FlatField Demo

SapAcqDevice::IsFeatureAvailable
BOOL IsFeatureAvailable(const char *featureName, BOOL *isAvailable);
Parameters
featureName Name of the feature. See device User’s Manual for the list of supported features.
isAvailable TRUE if the feature is supported by the device. FALSE otherwise
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Returns whether or not a feature is supported by the acquisition device. This function is useful when an
application supports several acquisition devices each having a different feature set.
Demo/Example Usage
GigE FlatField Demo, GigE Sequential Grab Demo, Camera Events Example, Camera Features Example,
Camera Files Example, GigE Auto-White Balance Example, GigE Camera LUT Example, GigE Camera LUT
Example, Grab CameraLink Example

SapAcqDevice::IsFileAccessAvailable
BOOL IsFileAccessAvailable();
Remarks
Gets availability of file access by the acquisition device. If this function returns FALSE, then you should not use

50 • Basic Class Reference Sapera LT ++ Programmer's Manual

the GetFileCount, GetFileNameByIndex, GetFileIndexByName, GetFileProperty, WriteFile, ReadFile, and
DeleteDeviceFile functions.
Demo/Example Usage
Not available

SapAcqDevice::IsFlatFieldAvailable
BOOL IsFlatFieldAvailable();
Remarks
Gets availability of hardware-based flat-field correction. You can only call IsFlatFieldAvailable after the Create
method.
Demo/Example Usage
GigE FlatField Demo

SapAcqDevice::IsParameterValid
BOOL IsParameterValid(int param);
Parameters
param Low-level Sapera C library parameter to be checked
Return Value
Returns TRUE if the parameter is supported, FALSE otherwise
Remarks
Checks for the availability of a low-level Sapera C library parameter for the acquisition device module. Call this
method before GetParameter to avoid invalid or not available parameter errors.
Note tha this method is rarely needed. The SapAcqDevice class already uses important parameters internally
for self-configuration and validation.
See the Sapera LT Basic Modules Reference Manual for a description of all parameters and their possible
values.
Demo/Example Usage
Not available

SapAcqDevice::IsRawBayerOutput
BOOL IsRawBayerOutput();
Remarks
Returns whether or not the current pixel format in the acquisition device is of the 'raw Bayer' type, and thus
can be processed using software Bayer conversion.
Demo/Example Usage
Not available

SapAcqDevice::LoadFeatures
BOOL LoadFeatures(const char* configFile);
Parameters
configFile Name of the configuration file (CCF) to load the features from
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Loads all the features from a Sapera LT camera configuration file (CCF), and writes them to the acquisition
device. This CCF file is generated by the CamExpert utility provided with Sapera LT, or by calling the
SaveFeatures method.
For devices that support hardware persistence storage (for example, Genie cameras), loading a CCF file is not
mandatory. For other devices, you must load a CCF file to ensure the device is in a usable state. See your
acquisition device User’s Manual to find out which category a specific acquisition device belongs to.
Note that you cannot call this method if the current object was contructed with read-only access. See the
SapAcqDevice constructor for details.

Sapera LT ++ Programmer's Manual Basic Class Reference • 51

Demo/Example Usage
Not available

SapAcqDevice::ReadFile
BOOL ReadFile(const char *deviceFileName, const char *localFilePath);
BOOL ReadFile(int deviceFileIndex, const char *localFilePath);
Parameters
deviceFileName Name of the device file. See the acquisition device User’s Manual for the list of supported

files.
deviceFileIndex Index of the file. All indices in the range from 0 to the value returned by the GetFileCount

method, minus 1, are valid.
localFilePath Full directory path and filename on the host computer to save the file.
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Reads the specified file from the device and saves it in the specified location on the host computer.
To find out which device files names are available, use the GetFileCount function together with the
GetFileNameByIndex function.
In order to use this function with an deviceFileIndex argument, you first need to call the GetFileIndexByName
function to retrieve the index corresponding to the file you want to delete.
Demo/Example Usage
Camera Files Example

SapAcqDevice::RegisterCallback
BOOL RegisterCallback(const char* eventName, SapAcqDeviceCallback callback, void* context);
BOOL RegisterCallback(int eventIndex, SapAcqDeviceCallback callback, void* context);
Parameters
eventName Event name. See the acquisition device User’s Manual for the list of supported events.
eventIndex Index of the event. All indices in the range from 0 to the value returned by the

GetEventCount method, minus 1, are valid.
callback Address of a user callback function of the following form:

void MyCallback(SapAcqDeviceCallbackInfo* pInfo)
{
}

context Pointer to a user storage (that is, variable, structure, buffer, etc). Can be NULL.
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Registers an event by associating a callback function for the specified name or index. When the event occurs in
the acquisition device, this callback function is called. It provides information on the corresponding event using
a SapAqcDeviceCallbackInfo object. Refer to this class for more details.
The context pointer is also returned by the callback function, allowing for the of exchange application specific
information.
Example
void MyCallback(SapAcqDeviceCallbackInfo* pInfo)
{
 // Access information using functions of SapAcqDeviceCallbackInfo class
 // ...
}

main()
{
 // ...
 acqDevice.RegisterCallback(“FeatureValueChanged”, MyCallback, NULL);
 // ...
 acqDevice.UnregisterCallback(“FeatureValueChanged”);
 // ...

52 • Basic Class Reference Sapera LT ++ Programmer's Manual

}
Demo/Example Usage
GigE FlatField Demo, Camera Events Example, Camera Features Example

SapAcqDevice::SaveFeatures
BOOL SaveFeatures(const char* configFile);
Parameters
configFile Name of the configuration file (CCF) to save the features to
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Saves acquisition device features to a Sapera LT camera configuration file (CCF). Not all features are saved.
For example, read-only features are not saved by default. Use the SapFeature::IsSavedToConfigFile and
SetSavedToConfigFile methods to control whether each individual feature is saved or not.
This method is useful for acquisition devices that do not support hardware persistence storage in order to
retrieve the feature values at a later time. See your acquisition device User’s Manual to find out if hardware
persistence storage is supported.
Demo/Example Usage
Not available

SapAcqDevice::SetFeatureValue
BOOL SetFeatureValue(const char *featureName, INT32 featureValue);
BOOL SetFeatureValue(const char *featureName, UINT32 featureValue);
BOOL SetFeatureValue(const char *featureName, INT64 featureValue);
BOOL SetFeatureValue(const char *featureName, UINT64 featureValue);
BOOL SetFeatureValue(const char *featureName, float featureValue);
BOOL SetFeatureValue(const char *featureName, double featureValue);
BOOL SetFeatureValue(const char *featureName, BOOL featureValue);
BOOL SetFeatureValue(const char *featureName, const char *featureString);
BOOL SetFeatureValue(const char *featureName, SapBuffer* featureBuffer);
BOOL SetFeatureValue(const char *featureName, SapLut* featureLut);

BOOL SetFeatureValue(int featureIndex, INT32 featureValue);
BOOL SetFeatureValue(int featureIndex, UINT32 featureValue);
BOOL SetFeatureValue(int featureIndex, INT64 featureValue);
BOOL SetFeatureValue(int featureIndex, UINT64 featureValue);
BOOL SetFeatureValue(int featureIndex, float featureValue);
BOOL SetFeatureValue(int featureIndex, double featureValue);
BOOL SetFeatureValue(int featureIndex, BOOL featureValue);
BOOL SetFeatureValue(int featureIndex, const char *featureString);
BOOL SetFeatureValue(int featureIndex, SapBuffer* featureBuffer);
BOOL SetFeatureValue(int featureIndex, SapLut* featureLut);
Parameters
featureName Name of the feature. See the acquisition device User’s Manual for the list of supported

features.
featureIndex Index of the feature. All indices from 0 to the value returned by the GetFeatureCount

method, minus 1, are valid.
featureValue Feature value to write. You must choose which function overload to use according to the

feature type.
featureString String feature to write
featureBuffer SapBuffer object to write
featureLut SapLut object to write
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Writes the value of a feature associated with a specified name or index.

Sapera LT ++ Programmer's Manual Basic Class Reference • 53

To find out which overloaded function to use, you must obtain the type of the feature by calling the
GetFeatureInfo method, followed by SapFeature::GetType. In the case of a class type (such as SapBuffer or
SapLut), you must call the Create method for that object before calling GetFeatureValue. To find out if the
feature is writable, use SapFeature::GetAccessMode.
Note that, except for unitless features, each feature has its specific native unit, for example, milliseconds, KHz,
tenth of degree, etc. This information is obtained through the SapFeature::GetSiUnit and
SapFeature::GetSiToNativeExp10 functions.
Note that you cannot call this method if the current object was contructed with read-only access. See the
SapAcqDevice constructor for details.
When dealing with enumerations, it is recommended to always use the string representation (featureString
argument) to set the value. The actual integer value corresponding to the enumeration string can vary from
one acquisition device to another, but the string representation is guaranteed to always represent the same
setting, even across manufacturers.
Demo/Example Usage
GigE FlatField Demo, Camera Events Example, Camera Features Example, Find Camera Example, GigE Auto-
White Balance Example, GigE Camera LUT Example, Grab CameraLink Example

SapAcqDevice::UnregisterCallback
BOOL UnregisterCallback(const char* eventName);
BOOL UnregisterCallback(int eventIndex);
Parameters
eventName Event name. See the acquisition device User’s Manual for the list of supported events.
eventIndex Index of the event. All indices in the range from 0 to the value returned by the

GetEventCount method, minus 1, are valid.
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Unregisters a callback function on the event associated with a specified name or index. Use this function in a
loop to unregister all the callback functions previously registered.
Example
// Unregisters all the callback functions
//
UINT32 eventCount, eventIndex;
acqDevice.GetEventCount(&eventCount);
for (eventIndex = 0; eventIndex < eventCount; eventIndex++)
{
 BOOL isRegistered;
 acqDevice.IsCallbackRegistered(eventIndex, &isRegistered);
 if (isRegistered)
 {
 acqDevice.UnregisterCallback(eventIndex);
 }
}
Demo/Example Usage
GigE FlatField Demo, Camera Events Example, Camera Features Example

SapAcqDevice::UpdateFeaturesFromDevice
BOOL UpdateFeaturesFromDevice();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets all the features from the acquisition device at once.
This method can only be used when the feature update mode is set to manual (see
SapAcqDevice::GetUpdateFeatureMode, SapAcqDevice::SetUpdateFeatureMode). In this mode, writing
individual features using the SetFeatureValue method is done to an internal cache. Calling this method resets
the internal cache to the values currently present in the device. This is useful when a certain number of
features have been written to the internal cache but you want to undo those settings.
Note that you cannot call this method if the current object was contructed with read-only access. See the

54 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapAcqDevice constructor for details.
This method is only implemented for acquisition devices which are supported through the Genie Framework.
Demo/Example Usage
Not available

SapAcqDevice::UpdateFeaturesToDevice
BOOL UpdateFeaturesToDevice();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Writes all the features to the acquisition device at once.
This method can only be used when the feature update mode is set to manual (see
SapAcqDevice::GetUpdateFeatureMode, SapAcqDevice::SetUpdateFeatureMode). In this mode, writing
individual features using the SetFeatureValue method is done to an internal cache. After all the required
features have been written, call this method to update the acquisition device.
Note that you cannot call this method if the current object was contructed with read-only access. See the
SapAcqDevice constructor for details.
This method is only implemented for acquisition devices which are supported through the Genie Framework.
Demo/Example Usage
Not available

SapAcqDevice::UpdateLabel
BOOL UpdateLabel();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Updates the acquisition device label. This function can be used if the device label is changed after creation of
the first Sapera object (device parameters are populated at this time with locally persisted values).
Demo/Example Usage
Camera Files Example

SapAcqDevice::WriteFile
BOOL WriteFile(const char *localFilePath, const char *deviceFileName);
BOOL WriteFile(const char *localFilePath, int deviceFileIndex);
Parameters
localFilePath Full directory path and filename on the host computer of the file to write to the device
deviceFileName Name of the device file. See the acquisition device User’s Manual for the list of supported

files.
deviceFileIndex Index of the file. All indices in the range from 0 to the value returned by the GetFileCount

method, minus 1, are valid.
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Reads the specified file from the specified location on the host computer and writes it to the device.
To find out which device files names are available, use the GetFileCount function together with the
GetFileNameByIndex function.
In order to use this function with an deviceFileIndex argument, you first need to call the GetFileIndexByName
function to retrieve the index corresponding to the file you want to delete.
Demo/Example Usage
Camera Files Example

Sapera LT ++ Programmer's Manual Basic Class Reference • 55

SapAcqDeviceCallbackInfo
The SapAcqDeviceCallbackInfo class acts as a container for storing all arguments to the callback function for the
SapAcqDevice class.

#include <SapClassBasic.h>

SapAcqDeviceCallbackInfo Class Members
Construction
SapAcqDeviceCallbackInfo Class constructor
Attributes
GetAcqDevice Gets the SapAcqDevice object associated with acquisition device events
GetContext Gets the application context associated with acquisition device events
GetEventInfo Gets the low-level Sapera handle of the event info resource
GetEventCount Gets the current count of acquisition device events
GetEventIndex Gets the index of the event that triggered the call to the application callback
GetHostTimeStamp Gets the timestamp corresponding to the moment when the event occurred

on the host
GetAuxiliaryTimeStamp Gets the timestamp corresponding to the moment when the event occurred

on the acquisition device
GetCustomData Gets the data associated with a custom event
GetCustomSize Gets the size of the custom data returned by GetCustomData
GetGenericParam0 Gets generic parameters supported by some events
GetGenericParam1
GetGenericParam2
GetGenericParam3
GetFeatureIndex Gets the index of the feature associated with the event

SapAcqDeviceCallbackInfo Member Functions
The following are members of the SapAcqDeviceCallbackInfo Class.

SapAcqDeviceCallbackInfo::SapAcqDeviceCallbackInfo
SapAcqDeviceCallbackInfo(SapAcqDevice* pAcqDevice, void* context, COREVENTINFO eventInfo);
Parameters
pAcqDevice SapAcqDevice object which called the callback function.
context Pointer to the application context.
eventInfo Low-level Sapera handle of the event info resource
Remarks
SapAcqDevice objects create an instance of this class before each call to the acquisition callback method in
order to combine all function arguments into one container.
The context parameter takes the value specified when calling the SapAcqDevice::RegisterCallback method.
The eventInfo handle is automatically created by Sapera LT.
Although it is possible to retrieve callback related parameters through eventInfo, you should rely on the other
parameter retrieval methods in this class instead, like GetFeatureIndex.
Demo/Example Usage
GigE FlatField Demo, Camera Events Example, Camera Features Example

SapAcqDeviceCallbackInfo::GetAcqDevice
SapAcqDevice* GetAcqDevice();
Remarks

56 • Basic Class Reference Sapera LT ++ Programmer's Manual

Gets the SapAcqDevice object associated with acquisition events. See the SapAcqDevice constructor for more
details.
Demo/Example Usage
GigE FlatField Demo, Camera Events Example, Camera Features Example

SapAcqDeviceCallbackInfo::GetAuxiliaryTimeStamp
BOOL GetAuxiliaryTimeStamp(UINT64* auxTimeStamp);
Parameters
auxTimeStamp Address of a 64-bit integer to return the timestamp value
Remarks
Gets the timestamp corresponding to the moment when the event occurred on the acquisition device. Note
that not all devices support this timestamp, and that this value is specific to the device. See the device User’s
Manual for more information on the availability of this value and the associated unit.
Demo/Example Usage
Not available

SapAcqDeviceCallbackInfo::GetContext
void *GetContext();
Remarks
Gets the application context associated with acquisition events. See the SapAcqDevice::RegisterCallback
function for more details.
Demo/Example Usage
Not available

SapAcqDeviceCallbackInfo::GetCustomData
BOOL GetCustomData(void** customData);
Parameters
customData Address of a pointer to receive the address to the data buffer
Remarks
Gets the address of a buffer containing the data associated with a custom event. You must not free the buffer
after you are finished using it.
This functionality is usually not supported, except for special versions of certain acquisition devices. See the
device User’s Manual for more information on availability.
Example
void MyCallback(SapAcqDeviceCallbackInfo* pInfo)
{
 // Retrieve the data buffer
 void* pCustomData;
 pInfo->GetCustomData(&pCustomData);

 // Use the data buffer
 //...
}
Demo/Example Usage
Not available

SapAcqDeviceCallbackInfo::GetCustomSize
BOOL GetCustomSize(int* customSize);
Parameters
customSize Address of an integer to return the value
Remarks
Gets the size of the custom data returned by the GetCustomData method.
Demo/Example Usage
Not available

Sapera LT ++ Programmer's Manual Basic Class Reference • 57

SapAcqDeviceCallbackInfo::GetEventCount
BOOL GetEventCount(int* eventCount);
Parameters
eventCount Address of an integer where the count is written
Remarks
Gets the current count of acquisition device events. The initial value is 1 and increments after every call to the
acquisition callback function.
Demo/Example Usage
Camera Events Example

SapAcqDeviceCallbackInfo::GetEventIndex
BOOL GetEventIndex(int* eventIndex);
Parameters
eventIndex Address of an integer where the event index is written
Remarks
Gets the index of the current event. Use this index to retrieve the name of the event using the
SapAcqDevice::GetEventNameByIndex method.
Demo/Example Usage
Not available

SapAcqDeviceCallbackInfo::GetEventInfo
COREVENTINFO GetEventInfo();
Remarks
Gets the low-level Sapera handle of the event info resource. You should not use this method unless you need a
handle to the low-level C API to access some functionality not exposed in the C++ API.
Demo/Example Usage
Not available

SapAcqDeviceCallbackInfo::GetFeatureIndex
BOOL GetFeatureIndex(int* featureIndex);
Parameters
featureIndex Address of an integer where the feature index is written
Remarks
Gets the index of the feature associated with the event. For example, it is used by the ‘Feature Info Changed’
event of the SapAcqDevice class. In this case it represents the index of the feature whose attributes have
changed. This index ranges from 0 to the value returned by the SapAcqDevice::GetFeatureCount method,
minus 1.
Demo/Example Usage
GigE FlatField Demo, Camera Events Example, Camera Features Example

SapAcqDeviceCallbackInfo::GetGenericParam0
SapAcqDeviceCallbackInfo::GetGenericParam1
SapAcqDeviceCallbackInfo::GetGenericParam2
SapAcqDeviceCallbackInfo::GetGenericParam3
BOOL GetGenericParam0(int* paramValue);
BOOL GetGenericParam1(int* paramValue);
BOOL GetGenericParam2(int* paramValue);
BOOL GetGenericParam3(int* paramValue);
Parameters
paramValue Address of an integer where the parameter value is written
Remarks

58 • Basic Class Reference Sapera LT ++ Programmer's Manual

Gets any of the four generic parameters supported by some events. You should use aliases instead when they
are available. For example, the ‘Feature Info Changed’ event of the SapAcqDevice class use the
GetFeatureIndex method as an alias to GetGenericParam0. See the acquisition device User’s Manual for a list
of events using generic parameters.
Demo/Example Usage
Not available

SapAcqDeviceCallbackInfo::GetHostTimeStamp
BOOL GetHostTimeStamp(UINT64* hostTimeStamp);
Parameters
hostTimeStamp Address of a 64-bit integer where the timestamp value is written
Remarks
Gets the timestamp corresponding to the moment when the event occurred on the host. When a registered
event is raised, the host timestamp is retrieved from the host CPU at the kernel level before the callback
function executes at the application level.
Under Windows, the value corresponding to the high-resolution performance counter is directly returned. Refer
to the QueryPerformanceCounter and QueryPerformanceFrequency functions in the Windows API
documentation for more details on how to convert this value to time units.
Note that not all acquisition devices support this timestamp. See the device User’s Manual for more
information on the availability of this value.
Demo/Example Usage
Not available

Sapera LT ++ Programmer's Manual Basic Class Reference • 59

SapBuffer

The SapBuffer Class includes the functionality to manipulate an array of buffer resources. The array contains buffer
resources with the same dimensions, format, and type.

The buffer object can be used as a destination transfer node to allow transferring data from a source node (such as
acquisition or another buffer) to a buffer resource. It can also be used as a source transfer node to allow transferring
data from a buffer resource to another buffer. The array of buffers allows a transfer to cycle throughout all the buffers.

The buffer object can be displayed using SapView Class and processed using the SapProcessing Class.

For more information on using buffers, see the Working with Buffers sertion of the Sapera LT Programmer's Manual.

#include <SapClassBasic.h>

SapBuffer Class Members
Construction
SapBuffer Class constructor
Create Allocates the low-level Sapera resources
Destroy Releases the low-level Sapera resources
Attributes
GetCount, Gets/sets the number of buffer resources in the array
SetCount
GetWidth, Gets/sets the width (in pixels) of all the buffer resources
SetWidth
GetHeight, Gets/sets the height (in lines) of all the buffer resources
SetHeight
GetFormat, Gets/sets the data format of all the buffer resources
SetFormat
IsMultiFormat Checks if the buffer resources are of multiformat type.
GetNumPages Gets the number of pages in a buffer resource
GetPageFormat Gets the format of the active page of the current buffer resource
GetType, Gets/sets the type of all the buffer resources
SetType
SetVirtualAddress Sets the virtual addresses to use for creating buffer resources
SetPhysicalAddress Sets the physical addresses to use for creating buffer resources
GetParameters, Gets/sets the count, width, height, format, and type of all the buffer resources
SetParameters
SetParametersFromFile Sets the attributes of all the buffer resources from an existing file storing a Sapera

buffer
GetPixelDepth, Gets/sets the number of significant bits of all the buffer resources

60 • Basic Class Reference Sapera LT ++ Programmer's Manual

SetPixelDepth
GetFrameRate
SetFrameRate

Gets/sets the frame rate of all the buffer resources

SetFrameRate
GetBytesPerPixel Gets the number of bytes required to store a single buffer element
GetPitch Gets the number of bytes between two consecutive lines of all the buffer resources
GetBufName Gets the name of a buffer object that is shared between multiple processes
GetHandles Gets the array of low-level Sapera handles to all the buffer resources
GetHandle operator[] Gets the low-level Sapera handle of a specified buffer resource
GetIndex, Gets/sets the index of the current buffer resource
SetIndex
Operations
ResetIndex Initializes the current buffer index
Next Increments the current buffer index
Clear Clears the content of all the buffers
Load Loads an image file into the current buffer resource
Save Saves the current buffer resource to an image file
Copy Copies contents of a single buffer resource from another SapBuffer object
CopyAll Copies contents of all the buffer resources from another SapBuffer object
CopyRect Copies a rectangular area from a single buffer resource to another buffer resource
SplitComponents Splits a color or multiformat buffer into its individual monochrome components
MergeComponents Merges individual monochrome components into a color buffer or individual

multiformat components into a multiformat buffer.
ColorConvert Converts a color image (for example, Bayer format) to RGB format
ColorWhiteBalance Calculates RGB white balance coefficients for a color image (for example, Bayer

format) to be used when converting to RGB format.
Read Reads a consecutive series of pixel values in the current buffer resource
ReadElement Reads the pixel value at a specified position in the current buffer resource
ReadLine Reads a series of linearly positioned pixel values in the current buffer resource
ReadRect Reads a series of pixel values from a rectangular area in the current buffer resource
Write Writes a consecutive series of pixel values in the current buffer resource
WriteElement Writes the pixel value at a specified position in the current buffer resource
WriteLine Writes a series of linearly positioned pixel values to the current buffer resource
WriteRect Writes a series of pixel values to a rectangular area in the current buffer resource
GetState Gets the empty/full state of the current buffer resource
SetState Sets the empty/full state of the current buffer resource
SetAllState Gets the empty/full state of all the buffer resources
GetPage Gets the active page of the current buffer resource for planar or multiformat buffer

types
SetPage Sets the active page of the current buffer resource for planar or multiformat buffer

types
SetAllPage Sets the active page of all the buffer resources for planar or multiformat buffer

types
GetAddress Initiates direct address to buffer resource data by a pointer
ReleaseAddress End direct buffer resource data access
IsMapped Indicates if there currently exists a valid virtual data address for a buffer resource
GetCounterStamp Gets a unique identifier associated with a buffer resource
GetHostCounterStamp Gets the host counter timestamp at which a specific event occurred.
GetSpaceUsed Gets the number of data bytes actually stored in a buffer resource

Sapera LT ++ Programmer's Manual Basic Class Reference • 61

IsBufferTypeSupported Checks if an acquisition resource supports data transfers to a specific buffer type
IsCapabilityValid Checks for the availability of a low-level Sapera C library capability
IsParameterValid Checks for the availability of a low-level Sapera C library parameter
GetCapability Gets the value of a low-level Sapera C library capability
GetParameter, Gets/sets the value of a low-level Sapera C library parameter
SetParameter

SapBuffer Member Functions
The following are members of the SapBuffer Class.

SapBuffer::SapBuffer
SapBuffer(
 int count = 1,
 int width = 640,
 int height = 480,
 SapFormat format = SapFormatMono8,
 SapBuffer::Type type = SapBuffer::TypeScatterGather,
 SapLocation loc = SapLocation::ServerSystem
);
SapBuffer(
 int count,
 ULONG_PTR physAddress[]
 int width = 640,
 int height = 480,
 SapFormat format = SapFormatMono8,
 SapBuffer::Type type = SapBuffer::TypeContiguous,
);
SapBuffer(
 int count,
 void* virtAddress[]
 int width = 640,
 int height = 480,
 SapFormat format = SapFormatMono8,
 SapBuffer::Type type = SapBuffer::TypeScatterGather,
);
SapBuffer(
 int count,
 SapXferNode* pSrcNode,
 SapBuffer::Type type = SapBuffer::TypeScatterGather,
 SapLocation loc = SapLocation::ServerSystem
);
SapBuffer(
 const char* fileName,
 SapBuffer::Type type = SapBuffer::TypeScatterGather
 SapLocation loc = SapLocation::ServerSystem
);
SapBuffer(
 int count,
 const char* bufName
 int width = 640,
 int height = 480,
 SapFormat format = SapFormatMono8,
 SapBuffer::Type type = SapBuffer::TypeScatterGather,
 SapLocation loc = SapLocation::ServerSystem
);
SapBuffer(
 int count,
 const char* bufName

62 • Basic Class Reference Sapera LT ++ Programmer's Manual

 SapXferNode* pSrcNode,
 SapBuffer::Type type = SapBuffer::TypeScatterGather,
 SapLocation loc = SapLocation::ServerSystem
);
SapBuffer(
 const char* bufName
 int startIndex
 int count,
 SapBuffer::Type type = SapBuffer::TypeVirtual,
 SapLocation loc = SapLocation::ServerSystem
);

SapBuffer(
 int count,
 SapDisplay* pDisplay
 int width = 640,
 int height = 480,
 SapFormat format = SapFormatMono8,
 SapBuffer::Type type = SapBuffer::TypeScatterGather,
);

SapBuffer(
 int count,
 SapDisplay* pDisplay
 SapXferNode* pSrcNode,
 SapBuffer::Type type = SapBuffer::TypeScatterGather,
);

Parameters
count Number of buffer resources
width Width (in pixels) of all the buffer resources
height Height (in lines) of all the buffer resources
format Data format of all the buffer resources, can be one of the following values:
 Monochrome (unsigned)

SapFormatMono1
SapFormatMono8
SapFormatMono16
SapFormatMono32

1-bit
8-bit
16-bit
32-bit

 Monochrome (signed)
SapFormatInt8
SapFormatInt16
SapFormatInt32

8-bit
16-bit
32-bit

 RGB Color
SapFormatRGB5551
SapFormatRGB565
SapFormatRGB888

SapFormatRGB8888
SapFormatRGB101010
SapFormatRGB161616
SapFormatRGB16161616
SapFormatRGBP8
SapFormatRGBP16
SapFormatRGBR888

16-bit (5 for each of red/green/blue, 1for alpha)
16-bit (5 for red, 6 for green, 5 for blue)
24-bit (8 for red, 8 for green, 8 for blue), blue component is stored first
32-bit (8 for each of red/green/blue, 8 for alpha)
32-bit (10 for each of red/green/blue, 2 unused)
48-bit (16 for each of red/green/blue)
64-bit (16 for each of red/green/blue/alpha)
8-bit planar
16-bit planar
24-bit (8 for red, 8 for green, 8 for blue), red component is stored first

 Bi Color
SapFormatBICOLOR88
SapFormatBICOLOR1616

8-bits per component, 32 total.
16-bits per component, 64 total

For both bicolor formats, 1 pixel is generated for 2 components (RG or
BG) therefore the buffer width is twice the size of the resulting image.

 YUV Color
SapFormatUYVY
SapFormatYUY2
SapFormatYVYU

16-bit, 4:2:2 subsampled
16-bit, 4:2:2 subsampled
16-bit, 4:2:2 subsampled

Sapera LT ++ Programmer's Manual Basic Class Reference • 63

SapFormatYUYV
SapFormatY411
SapFormatY211
SapFormatYUV

16-bit, 4:2:2 subsampled
12-bit, 4:1:1 subsampled
8-bit, 4:2:2 subsampled
32-bit (8 for each of Y/U/V, 8 for alpha)

 LAB Color
SapFormatLAB
SapFormatLABP8
SapFormatLABP16
SapFormatLAB101010
SapFormatLAB161616

32-bit (8 for each component, 8 unused)
8-bit Planar(8 for each component, 8 unused)
16-bit Planar (16 for each component, 8 unused)
32-bit (10 for each of red/green/blue, 2 unused)
48-bit (16 for each component, 16 unused)

 Other Formats
SapFormatHSV
SapFormatHSI
SapFormatHSIP8
SapFormatFloat
SapFormatPoint
SapFormatFPoint

32-bit HSV (8 for each component, 8 unused)
32-bit HSI (8 for each component, 8 unused)
8-bit HSI planar
32-bit signed floating point
64-bit (32-bit signed integer for both X and Y components)
64-bit (32-bit signed floating-point for both X and Y components)

 Multiformat
SapFormatRGB888_MONO8
SapFormatRGB161616_MONO16

32-bit (8 for each of red/green/blue, IR)
64-bit (16 for each of red/green/blue/IR)

For each line in a buffer, the first ¾ (left side) represents the RGB data
and the last ¼ (right side) represents the monochrome (IR) data.

Note: Multiformat buffer types do not support color conversion; the RGB
component must be extracted into a supported RGB format. For load
and save operations, only the CRC and RAW formats are supported.

 See also the SapData classes for Sapera data elements described in this document
type Type of all buffer resources can be one of the following values:
 SapBuffer::

TypeContiguous
Buffers are allocated in Sapera Contiguous Memory, which is one large
chunk of non-pageable and non-moveable memory reserved by
Sapera at boot time. Buffer data is thus contained in a single memory
block (not segmented). These buffers may be used as source and
destination for transfer resources.

 SapBuffer::
TypeScatterGather

Buffers are allocated in noncontiguous memory (paged pool). Pages
are locked in physical memory so that a scatter-gather list may be
built. This allows allocation of very large buffers to be used as source
and destination for transfer resources. The maximum amount of
memory that may be allocated depends on available memory, the
operating system, and the application(s) used. If the amount of
system memory exceeds 4 GBytes, Sapera automatically uses
TypeScatterGatherUnmapped instead.

 SapBuffer::
TypeVirtual

Similar to TypeScatterGather, except that the memory pages are not
locked. This allows allocation of very large buffers, but they cannot be
used as source or destination for transfer resources.

 SapBuffer::
TypeOffscreen

Buffers are allocated in system memory. SapView objects created
using these buffers may use display adapter hardware to copy from
the buffer to video memory. System memory offscreen buffers may be
created using any pixel format, but calling the SapView::Show method
will take longer to execute if the display hardware does not efficiently
support its pixel format.

 SapBuffer::
TypeOffscreenVideo

Buffers are allocated in offscreen video memory. SapView objects
created using these buffers use display adapter hardware to perform a
fast copy in video memory. These buffers are typically used when a
graphical element is reused for several consecutive frames without
modification. In this case, it is more efficient to keep this element in
video memory and use display hardware capabilities.

 SapBuffer::
TypeOverlay

Buffers are allocated in video memory. Once you create SapView
objects using these buffers and call their Show method once, the
display adapter overlay hardware will keep updating the display with
the buffer contents with no additional calls The pixel format of overlay
buffers must be supported by the display hardware. Typically, overlay
buffers support more pixel formats (like YUV) than offscreen buffers.
Also, color keying is supported for overlays. The SapView Class
determines the behavior of the overlay regarding key colors.

64 • Basic Class Reference Sapera LT ++ Programmer's Manual

 SapBuffer::
TypeDummy

Dummy buffers do not have any data memory. They may be used as
placeholders by transfer resources when there is no physical data
transfer.

 SapBuffer::
TypeUnmapped

Buffers are allocated as a series of non-contiguous chunks of physical
memory. You may not access their data until they have been mapped
to virtual memory addresses using the GetAddress method. This type
of buffer is useful if the total amount of needed buffer data exceeds
the amount of available virtual memory addresses (2 GBytes under
32-bit Windows). To avoid a shortage of virtual memory addresses,
use the ReleaseAddress method as soon as you are done accessing
their data. Note that you cannot acquire images into these buffers.
This buffer type is neither supported nor needed in Sapera LT for 64-
bit Windows.

 SapBuffer::
TypeScatterGather
Unmapped

These buffers are similar to TypeUnmapped, except that you can
acquire images into them. This buffer type is neither supported nor
needed in Sapera LT for 64-bit Windows.

 SapBuffer::
TypeScatterGather
Physical

These buffers are needed in 64-bit Windows for some frame grabbers
(for example, X64-CL iPro) which feature DMA transfers to the host
using 32-bit addresses. These frame grabbers do not support
acquisition in regular scatter-gather buffers
(SapBuffer::TypeScatterGather), because they require all physical
addresses used during DMA transfers to be limited to 32-bit values.

loc SapLocation object specifying the server on which the buffer resources are to be created. The
resource index of the location object is ignored.

physAddress Array of physical addresses to use when creating buffer resources. This is intended for cases
when you do not want Sapera to allocate buffer memory (in the Create method), and you
already know the physical addresses where you want buffers to be located. These addresses
typically correspond to hardware devices in the system.

virtAddress Array of virtual addresses to use when creating buffer resources. This is intended for cases
when you do not want Sapera to allocate buffer memory (in the Create method), but you want
to control the allocation and free memory in the application program instead. Memory thus
remains available even after calling the Destroy method.

pSrcNode Source node object. The width, height, and format parameters are extracted automatically from
this object. To ensure transfer compatibility, this object must match the source node specified
when adding a transfer pair (SapXferPair) to the SapTransfer object.

fileName Name of a Sapera image file from which to extract the count, width, height, and format
parameters

bufName Name identifying the buffer object so that it may be shared between multiple processes
startIndex Starting index of buffer resource when using a shared buffer object created in another process
pDisplay SapDisplay object for creating a compatible buffer object
Remarks
The SapBuffer constructor does not actually create the low-level Sapera resources. To do this, you must call
the Create method.
The count parameter specifies the number of buffer resources, all of which have the same width, height,
format, and type.Constructing the object using physAddress or virtAddress tells Sapera not to perform
memory allocation itself in the Create method, but rather to rely on the supplied addresses.
Constructing the object using pSrcNode allows Sapera to automatically extract the width, height, and format
from the source node to ensure transfer compatibility.
Constructing the object using fileName allows Sapera to automatically extract the count, width, height, and
format from the file to ensure buffer compatibility. You must then use the Load method after calling Create.
The loc argument allows the creation of buffer resources on a remote server.
Constructing the object using bufName allows sharing of a buffer object between multiple processes. The first
process that calls the constructor creates the actual buffer resources. The other processes that call the
constructor with the same name automatically use the same resources. You may use the startIndex and count
arguments to use only a subset of all the shared resources in the buffer object.
To transfer data to/from the buffer object, you must use the SapTransfer class (or one of its derived classes)
and specify the SapBuffer object as a parameter. The data transfer is then controlled by the SapTransfer class.
On acquisition hardware with an integrated display controller (for example, Bandit 3), it is also possible to

Sapera LT ++ Programmer's Manual Basic Class Reference • 65

create a buffer object from a display object using the pDisplay argument. This is useful, for example, when we
need a buffer object of overlay type with a data format which is compatible with the display.
To use this functionality, you must perform the following steps in order:

• call the SapDisplay constructor with a SapLocation object for the acquisition hardware
• call one the SapBuffer constructors with a SapDisplay object
• call the SapView constructor with a SapDisplay object
• call the Create methods for the display, buffer, and then the view object

Note, for Bayer acquisition the buffer format is either SapFormatMono8 or SapFormatMono16; refer to the
SapColorConversion Member Functions class for more information on manipulating Bayer buffers.

For more information on using buffers, see the Working with Buffers sertion of the Sapera LT Programmer's
Manual.
Demo/Example Usage
Bayer Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo, Grab Demo,
Sequential Grab Demo, Color Split Example, File Load Console Example, File Load MFC Example, GigE Auto-
White Balance Example, GigE Camera LUT Example, GigE CameraLink Example, Grab LUT Example, Grab MFC
Example

SapBuffer::Clear
BOOL Clear();
BOOL Clear(int index);
BOOL Clear(SapData value);
BOOL Clear(int index, SapData value);
Parameters
index Buffer resource index
value New value for all buffer elements. See the SapData Class and its derived classes for more details.
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Clears the content of a specified buffer resource in the array. If no value is specified, then black (usually 0) is
assumed. If no index is specified, all buffers are cleared.
For multiformat buffers (for example, SapFormatRGB888_MONO8 or RGB161616_MONO16) use a
SapDataRGBA object,
Demo/Example Usage
Bayer Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo, Grab Demo,
Sequential Grab Demo

SapBuffer::ColorConvert
BOOL ColorConvert(SapBuffer *pSrc, ColorAlign align, ColorMethod method, SapDataFRGB wbCoef, SapLut
*pLut = NULL);
BOOL ColorConvert(SapBuffer *pSrc, int srcIndex, int dstIndex, ColorAlign align, ColorMethod method,
SapDataFRGB wbCoef, SapLut *pLut = NULL);
Parameters
pSrc Buffer object to convert. The input buffer format must be one of the following:

 SapFormatUint8
 SapFormatUint16

srcIndex Source buffer resource index
dstIndex Destination buffer resource index in the current object
align Specifies the pixel alignment for the color filter. The alignment mode must correspond to the

upper left 2x2 square of your camera’s color scheme for Bayer conversion; 1x4 line for Bicolor
conversion. If the input buffer is a child, the alignment mode is internally recalculated with
respect to the upper left corner. Possible values are:

 SapBuffer::ColorAlignGBGR

66 • Basic Class Reference Sapera LT ++ Programmer's Manual

 SapBuffer::ColorAlignBGGR

 SapBuffer::ColorAlignRGGB

 SapBuffer::ColorAlignGRBG

 SapBuffer::ColorAlignRGBG
 SapBuffer::ColorAlignBGRG
method Specifies the conversion method. Possible values are:
 SapBuffer::ColorMethod1 This technique, based on 3x3 bi linear interpolation, is fast

but tends to smooth image edges.
 SapBuffer::ColorMethod2 This advanced technique is better for preserving image

edges. However it works well only when the image has a
strong green content. If not, a little amount of noise may
be visible in objects.

 SapBuffer::ColorMethod3 This advanced technique is almost as good as method 2
for preserving the edges but is independent of the image
green content. Little color artifacts of 1 pixel may be
visible in edges.

 SapBuffer::ColorMethod4 This technique, based on 2x2 interpolation, is the
simplest and fastest. Compared to 3x3 it is better at
preserving edge sharpness but introduces a slight jitter in
pixel position. In practice it is a good choice for image
display but less recommended than 3x3 for accurate
image processing.

 SapBuffer::ColorMethod5 This technique, based on a set of linear filters, works
under the main assumption that edges have much
stronger luminance than chrominance component.

 SapBuffer::ColorMethod6 Reserved.
 SapBuffer::ColorMethod7 Support for bi-color conversion for use with the Teledyne

DALSA Piranha 4 camera.
wbCoef White balance coefficients. Can be calculated by SapBuffer::ColorWhiteBalance or set manually

as follows:
SapDataFRGB wb;
 wb.frgb.red = <Red Gain>
 wb.frgb.green = <Green Gain>
 wb.frgb.blue = <Blue Gain>
If no white balance is required, all gains must be set to 1.0.

pLut LUT handle. Color lookup table applied after the filtering for color adjustment, for example,
gamma correction. The number of entries required by the LUT must be 2N, where N is the
buffer’s pixel depth. The LUT format must be one of the following according to the output
format: SapFormatColorNI8 or SapFormatColorNI16.

Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Converts images from the color image format to RGB format. The color format assigns each pixel in a
monochrome image the value of one color channel. RGB images are created by using neighbouring pixel
values to get the two missing color channels at each pixel.
Pixels in a row of a color image alternate between the green channel value and either the red or the blue
channel value. The default scheme is shown below.

Sapera LT ++ Programmer's Manual Basic Class Reference • 67

The missing color channel values are determined using neighbouring pixel values for the color channel in
question either by linear interpolation (SapBuffer::ColorMethod1) or by one of the advanced methods
(SapBuffer::ColorMethod1 or ColorMethod3. The advanced methods are more computationally expensive than
the interpolation method but give better image quality when the input image contains many strong edges.
If the input image is 16-bit and the significant bits are stored in the lower bits (for example, 10-bit camera)
the buffer’s pixel depth (CORBUFFER_PRM_PIXEL_DEPTH) must be set to the number of significant bits.
The white balance coefficients (wbCoef) are the R, G, and B gains applied to the input image before the
filtering. These gains are used to balance the three color components so that a pure white at the input gives a
pure white at the output.
The output lookup table (lut) may be used to apply a color correction after the filtering. A commonly used
correction is gamma (SapLut::Gamma function of the LUT class).
Demo/Example Usage
Not available

SapBuffer::ColorWhiteBalance
BOOL ColorWhiteBalance (ColorAlign align, SapDataFRGB *pWbCoef)
BOOL ColorWhiteBalance (int index, ColorAlign align, SapDataFRGB *pWbCoef);
Parameters
index Index of buffer object to convert. The input buffer format must be one of the following:

 SapFormatUint8
 SapFormatUint16

align Specifies the pixel alignment for the color filter. The alignment mode must correspond to the
upper left 2x2 square of your camera’s color scheme for Bayer conversion; 1x4 line for Bicolor
conversion. If the input buffer is a child, the alignment mode is internally recalculated with
respect to the upper left corner. Possible values are:

 SapBuffer::ColorAlignGBGR

 SapBuffer::ColorAlignBGGR

 SapBuffer::ColorAlignRGGB

 SapBuffer::ColorAlignGRBG

 SapBuffer::ColorAlignRGBG
 SapBuffer::ColorAlignBGRG
pWbCoef Pointer to memory location to store calculated white balance coefficients. Coefficients are

calculated for the R, G, and B color channels.
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Calculates the white balance coefficients used by SapBuffer::ColorConvert on a color-encoded input image.
The first prototype functions on the current buffer object (buffer index o= 0). The input buffer should be a
region-of-interest (ROI) of a color-encoded image containing a uniformly illuminated white region. The
intensity of the pixels should be as high as possible but not saturated. The coefficients are calculated as
follows:

G R = Max(R , G , B) / R

G G = Max(R , G , B) / G

G B = Max(R , G , B) / B

where R , G and B are the average value of each color component calculated on all the pixels of the input
image.
Demo/Example Usage

68 • Basic Class Reference Sapera LT ++ Programmer's Manual

Not available

SapBuffer::Copy
BOOL Copy(SapBuffer* pSrc);
BOOL Copy(SapBuffer* pSrc, int srcIndex, int dstIndex);
Parameters
pSrc Buffer object to copy from
srcIndex Source buffer resource index
dstIndex Destination buffer resource index in the current object
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Copies the contents of a single buffer resource from a source buffer object to the current object. If no source
index is specified, the current source buffer index is assumed. If no destination index is specified, the current
destination buffer index is assumed.
When the source buffer is larger than the destination buffer in the current object, only the section of the
source that fits into the destination is copied.
If the source and destination buffer objects have different formats, automatic data conversion takes place
whenever possible.
For multiformat buffer types (for example, SapFormatRGB888_ MONO8 or RGB161616_MONO16) the copy
function can be used to extract either the RGB or mono component to a MONO8/RGB888/RGB8888 or
MONO16/RGB161616/RGB16161616 buffer.
Demo/Example Usage
Not available

SapBuffer::CopyAll
BOOL CopyAll(SapBuffer* pSrc);
Parameters
pSrc Buffer object to copy from
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Copies the contents of all buffer resources from a source buffer object to the current object. If the two have
different buffer counts, the smaller of the two counts is used.
If the source and destination buffer objects have different formats, automatic data conversion takes place
whenever possible.
Demo/Example Usage
Not available

SapBuffer::CopyRect
BOOL CopyRect(SapBuffer* pSrc, int srcIndex, int xSrc, int ySrc, int width, int height, int dstIndex, int xDest,
int yDest);
Parameters
pSrc Buffer object to copy from
srcIndex Source buffer resource index
xSrc Left coordinate of source rectangle origin
ySrc Top coordinate of source rectangle origin
width Source rectangle width
height Source rectangle height
dstIndex Destination buffer resource index in the current object
xDest Left coordinate of destination rectangle

Sapera LT ++ Programmer's Manual Basic Class Reference • 69

yDest Top coordinate of destination rectangle
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Copies a rectangular area from a single buffer resource to another buffer resource. If the source area is too
large for the destination buffer resource in the current object, only the section of the source that fits into the
destination is copied.
The source and destination buffer objects must have the same format since there is no automatic data
conversion as in the SapBuffer::Copy method.
Demo/Example Usage
Not available

SapBuffer::Create
BOOL Create();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Creates all the low-level Sapera resources needed by the buffer object. If it is used together with an
acquisition and a transfer object, then you must call this method after SapAcquisition::Create, but before
SapTransfer::Create.
Demo/Example Usage
Bayer Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo, Grab Demo,
Sequential Grab Demo, Color Split Example, File Load Console Example, File Load MFC Example, GigE Auto-
White Balance Example, GigE Camera LUT Example, GigE CameraLink Example, Grab LUT Example, Grab MFC
Example

SapBuffer::Destroy
BOOL Destroy();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Destroys all the low-level Sapera resources needed by the buffer object. Always call this method after
SapTransfer::Destroy.
Demo/Example Usage
Bayer Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo, Grab Demo,
Sequential Grab Demo, Color Split Example, File Load Console Example, File Load MFC Example, GigE Auto-
White Balance Example, GigE Camera LUT Example, GigE CameraLink Example, Grab LUT Example, Grab MFC
Example

SapBuffer::GetAddress
BOOL GetAddress(void** pData);
BOOL GetAddress(void* virtualBaseAddress, void** pData);
BOOL GetAddress(int index, void** pData);
BOOL GetAddress(int index, void* virtualBaseAddress, void** pData);
BOOL GetAddress(int offset, int size, void** pData);
BOOL GetAddress(int offset, int size, void* virtualBaseAddress, void** pData);
BOOL GetAddress(int index, int offset, int size, void** pData);
BOOL GetAddress(int index, int offset, int size, void* virtualBaseAddress, void** pData);
Parameters
pData Pointer to returned buffer data address
virtualBaseAddress Starting address of a memory area already reserved by the application
index Buffer resource index
offset Byte offset from beginning of buffer data for partial mapping

70 • Basic Class Reference Sapera LT ++ Programmer's Manual

size Number of bytes of buffer data to access for partial mapping
Return Value

Returns TRUE if successful, FALSE otherwise

Remarks

Gets the virtual address where buffer data is stored. Call GetAddress when you need to process buffers in the
application itself. Since the Read and Write methods are too slow for this purpose, you need direct access
through a pointer. In order to correctly interpret the raw data, you also need to use some or all of the
following methods: GetWidth, GetHeight, GetFormat, GetPixelDepth, GetBytesPerPixel, and GetPitch.
Accessing buffer data in video memory may be very slow. In this case, you must call the ReleaseAddress
method as soon as possible when you are finished, since getting the address prevents the display hardware
from accessing buffer data. This may result in image display problems.
When dealing with buffers that are TypeUnmapped or TypeScatterGatherUnmapped, you should call the
ReleaseAddress method as soon as possible when you are done. Getting the data address causes the actual
physical to virtual memory mapping to occur. Releasing the address ends the memory mapping and may
prevent exhaustion of virtual memory resources in the operating system.
When dealing with very large buffers, you may want to map the buffer data area one section at a time, since
fully mapping a very large amount of memory can consume a large amount of system resources. In this case,
use the offset and size arguments to specific the partial area to map, and call the ReleaseAddress method
before mapping another section.
If you need control over the addresses where the buffer mapping occurs, then use the virtualBaseAddress
argument. It allows you to specify an address of memory that has already been reserved by the application as
the base address for memory mapping.
For buffer types other than those mentioned above, you do not need to call ReleaseAddress after accessing
buffer data.
If no buffer index is specified, the current index is assumed.
Demo/Example Usage
Color Split Example

SapBuffer::GetBufName
const char* GetBufName();
Remarks
Gets the name of a buffer object that is shared between multiple processes. If the SapBuffer object was not
created using one of the constructors with shared buffers, the value of this attribute is an empty string.
Demo/Example Usage
Not available

SapBuffer::GetBytesPerPixel
int GetBytesPerPixel();
Remarks
Gets the number of bytes required to store a single buffer element of all the buffer resources.
You can only read the value of this attribute after calling the Create method.
Demo/Example Usage
Not available

SapBuffer::GetCapability
BOOL GetCapability(int cap, void* pValue);
BOOL GetCapability(int index, int cap, void* pValue);
Parameters
cap Low-level Sapera C library capability to read
pValue Pointer to capability value to read back
index Buffer resource index
Return Value

Sapera LT ++ Programmer's Manual Basic Class Reference • 71

Returns TRUE if successful, FALSE otherwise
Remarks
This method allows direct read access to low-level Sapera C library capabilities for the buffer module. It needs
a pointer to a memory area large enough to receive the capability value, which is usually a 32-bit integer. If
no index is specified, the current buffer index is assumed.
Note that you will rarely need to use GetCapability. The Class already uses important capabilities internally for
self-configuration and validation.
See the Sapera LT Basic Modules Reference Manual for a description of all capabilities and their possible
values.
Demo/Example Usage
Not available

SapBuffer::GetCount, SapBuffer::SetCount
int GetCount();
BOOL SetCount(int count);
Remarks
Gets/sets the number of buffer resources. The initial value for this attribute is 1, unless you specify another
value in the constructor.
You can only call SetCount before the Create method.
Demo/Example Usage
Sequential Grab Demo, GigE Sequential Grab Demo, Color Split Example

SapBuffer::GetCounterStamp
BOOL GetCounterStamp(int*pCounterStamp);
BOOL GetCounterStamp (int index, int* pCounterStamp);
Parameters
pCounterStamp Pointer to the returned counter value for the specified buffer resource
index Buffer resource index
Return Value

Returns TRUE if successful, FALSE otherwise

Remarks

Gets a unique value associated with a buffer resource. This value is normally expressed in microseconds. It
has no meaning by itself; however, subtracting counter stamp values for two buffer resources gives the
amount of time elapsed between a common reference point for their respective data transfers.
Even though the returned value is a signed integer, you should convert it to an unsigned integer before using
it, since the actual hardware timestamp is unsigned. This is especially important if you need to compare
counter stamp values from two different buffers. The counter stamp value may also be expressed in other
units. See the SapXferPair::GetCounterStampTimeBase, SapXferPair::SetCounterStampTimeBase method for
details.
Note that some transfer devices do not support this feature.
If no buffer index is specified, the current index is assumed.
Demo/Example Usage
Sequential Grab Demo

SapBuffer::GetFormat, SapBuffer::SetFormat
SapFormat GetFormat();
BOOL SetFormat(SapFormat format);
Remarks
Gets/sets the format of all the buffer resources.
There are many possible initial values for this attribute, if you do not specify it explicitly in the constructor.
 If using the constructor with a SapXferNode object, then this value is SapFormatUnknown, and is

then set correctly from the transfer node object after calling the Create method.

72 • Basic Class Reference Sapera LT ++ Programmer's Manual

 If using the constructor with a file name, then this value is taken directly from the file.
 If using the constructor with a shared buffer object with a starting index and count, then this value is

SapFormatUnknown. It is then set correctly from the shared buffer object after calling the Create
method.

 Otherwise, the initial value is equal to SapFormatMono8.
You can only call SetFormat before the Create method. See the SapBuffer constructor for possible values for
format (other than SapFormatUnknown).
Demo/Example Usage
Not available

SapBuffer::GetFrameRate, SapBuffer::SetFrameRate
float GetFrameRate();
void SetFrameRate(float frameRate);
Remarks
Gets/sets the frame rate in the buffer object. This value is used when loading or saving a sequence of buffers
from/to a file (for example in AVI format).
When loading a buffer sequence the frame rate is restored from the file and can then be obtained through a
call to GetFrameRate.
When saving a buffer sequence you may optionally save the frame rate. To do so you must specify the frame
rate using the SetFrameRate function before saving the file. Note that in such a case the you must compute
the frame rate yourself.
The frame rate information is irrelevant when the file format does not support sequences of buffers (for
example BMP or TIFF formats).
Demo/Example Usage
Sequential Grab Demo, GigE Sequential Grab Demo

SapBuffer::GetHandle, SapBuffer::operator[]
CORHANDLE GetHandle();
CORHANDLE GetHandle(int index);
CORHANDLE operator[] (int index);
Parameters
index Index of the required buffer resource handle
Remarks
Returns the low-level Sapera handle of the specified buffer resource, which you may then use from low-level
Sapera functionality. If no index is specified, the current buffer index is assumed. The handle is only valid after
you call the Create method.
See the Sapera LT Basic Modules Reference Manual for details on low-level Sapera functionality.
Demo/Example Usage
Not available

SapBuffer::GetHandles
CORHANDLE* GetHandles();
Remarks
Gets the low-level Sapera handles of all the buffer resources, which you may then use from low-level Sapera
functionality. The handle is only valid after you call the Create method.
See the Sapera LT Basic Modules Reference Manual for details on low-level Sapera functionality.
Demo/Example Usage
Not available

SapBuffer::GetHeight, SapBuffer::SetHeight
int GetHeight();
BOOL SetHeight(int height);
Remarks

Sapera LT ++ Programmer's Manual Basic Class Reference • 73

Gets/sets the height of all the buffer resources.
There are many possible initial values for this attribute, if you do not specify it explicitly in the constructor.
 If using the constructor with a SapXferNode object, then this value is 0, and is then set correctly

from the transfer node object after calling the Create method. In this case, calling SetHeight has no
effect, as the height from the SapXferNode object always takes precedence.

 If using the constructor with a file name, then this value is taken directly from the file.
 If using the constructor with a shared buffer object with a starting index and count, then this value is

0. It is then set correctly from the shared buffer object after calling the Create method.
 Otherwise, the initial value is equal to 480.
You can only call SetHeight before the Create method.
Demo/Example Usage
Dual Acquisition Demo, Color Split Example, File Load MFC Example, GigE Auto-White Balance Example, Grab
MFC Example

SapBuffer::GetHostCounterStamp
BOOL GetHostCounterStamp(UINT64* pCounterStamp);
BOOL GetHostCounterStamp (int index,UINT64* pCounterStamp);
Parameters
pCounterStamp Pointer to the returned counter value for the specified buffer resource
index Buffer resource index
Return Value

Returns TRUE if successful, FALSE otherwise

Remarks

Host counter timestamp at which a specific event occurred, such as the end or start of frame. This value is
determined by the timebase of the CPU clock. Subtracting counter stamp values for two buffers gives the
amount of time elapsed between a common reference point for their respective data transfers.
Under Windows, the value corresponding to the high-resolution performance counter is directly returned. Refer
to the QueryPerformanceCounter and QueryPerformanceFrequency functions in the Windows API
documentation for more details on how to convert this value to time units.
Note, the CPU clock is common to all applications and devices on the PC. For example, if you have several
Teledyne DALSA boards installed, they all refer to the same CPU clock.
Demo/Example Usage
Not available

SapBuffer::GetNumPages
BOOL GetNumPages(int *pNumPages);
Parameters
pNumPages Pointer to the returned number of pages
Return Value

Returns TRUE if successful, FALSE otherwise

Remarks
Gets the number of pages in the current buffer resource.
This applies only to buffer types for which pixel data is stored in separate planes (pages), instead of being
packed together. For example, 8-bit RGB planar (SapFormatRGBP8) 8-bit HSI planar (SapFormatHSIP8), or
multiformat (SapFormatRG888_MONO8 or SapFormatRGB161616_MONO16).
The active page only affects image display. For example, if the image format is 8-bit RGB planar and the page
index is 0, then the red component will be displayed. If the index is 1 or 2, then the green and blue
components will be displayed, respectively.
Note that all methods that access an individual buffer resource in the SapBuffer class use the current index
when none is specified.
Demo/Example Usage
Not available

74 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapBuffer::GetIndex, SapBuffer::SetIndex
int GetIndex();
BOOL SetIndex(int index);
Parameters
index Buffer resource index
Remarks
Gets/sets the index of the current buffer. The value of this attribute is set to the last buffer resource after
calling the Create method. It is then automatically set by the SapTransfer class to the last acquired buffer
through the Next method.
Note that all methods that access an individual buffer resource in the SapBuffer class use the current index
when none is specified.
Demo/Example Usage
Sequential Grab Demo, GigE Sequential Grab Demo

SapBuffer::GetPage
BOOL GetPage(int *pPage);
BOOL GetPage(int index, int *pPage);
Parameters
pPage Pointer to the returned page number
index Buffer resource index
Return Value

Returns TRUE if successful, FALSE otherwise

Remarks

Gets the active page (or plane) of the current buffer resource.
This applies only to buffer types for which pixel data is stored in separate planes, instead of being packed
together. For example, 8-bit RGB planar (SapFormatRGBP8) or 8-bit HSI planar (SapFormatHSIP8).
The active page only affects image display. For example, if the image format is 8-bit RGB planar and the page
index is 0, then the red component will be displayed. If the index is 1 or 2, then the green and blue
components will be displayed, respectively.
If no buffer index is specified, the current index is assumed.
Demo/Example Usage
Not available

SapBuffer::GetPageFormat
BOOL GetPageFormat(SapFormat *pageFormat);
Parameters
pageFormat Pointer to the returned SapFormat
Return Value

Returns TRUE if successful, FALSE otherwise

Remarks

Gets the buffer format of the active page (or plane) of the current buffer resource.
This applies only to buffer types for which pixel data is stored in separate planes, instead of being packed
together. For example, 8-bit RGB planar (SapFormatRGBP8) or 8-bit HSI planar (SapFormatHSIP8).
The active page only affects image display. For example, if the image format is 8-bit RGB planar and the page
index is 0, then the red component will be displayed. If the index is 1 or 2, then the green and blue
components will be displayed, respectively.
If no buffer index is specified, the current index is assumed.
Demo/Example Usage
Not available

SapBuffer::GetParameter, SapBuffer::SetParameter

Sapera LT ++ Programmer's Manual Basic Class Reference • 75

BOOL GetParameter(int param, void* pValue);
BOOL GetParameter(int index, int param, void* pValue);
BOOL SetParameter(int param, int value);
BOOL SetParameter(int index, int param, int value);
BOOL SetParameter(int param, void* pValue);
BOOL SetParameter(int index, int param, void* pValue);
Parameters
param Low-level Sapera C library parameter to read or write
pValue Pointer to parameter value to read back or to write
index Buffer resource index
value New parameter value to write
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
These methods allow direct read/write access to low-level Sapera C library parameters for the buffer module.
The GetParameter method needs a pointer to a memory area large enough to receive the parameter value,
which is usually a 32-bit integer. The first form of SetParameter accepts a 32-bit value for the new value. The
second form takes a pointer to the new value, and is required when the parameter uses more than 32 bits of
storage. If no index is specified, the current buffer index is assumed.
Note that you will rarely need to use these methods. You should first make certain that what you need is not
already supported through the Class. Also, directly setting parameter values may interfere with the correct
operation of the class.
See the Sapera LT Basic Modules Reference Manual for a description of all parameters and their possible
values.
Demo/Example Usage
Sequential Grab Demo, GigE Sequential Grab Demo

SapBuffer::GetParameters, SapBuffer::SetParameters
void GetParameters(int* count, int* width, int* height, SapFormat* format, SapBuffer::Type* type);
BOOL SetParameters(int count, int width, int height, SapFormat format, SapBuffer::Type type);
BOOL SetParameters(int count, void* virtAddress[], int width, int height, SapFormat format,
SapBuffer::Type type);
BOOL SetParameters(int count, int* physAddress[], int width, int height, SapFormat format,
SapBuffer::Type type);
Remarks
Gets/sets the count, width, height, format, type of all the buffer resources. You can also set the virtual and
physical addresses to use when creating buffer resources.
You can only call SetParameters before the Create method. See the SapBuffer constructor for possible values
for more details.
Demo/Example Usage
Dual Acquisition Demo, Color Split Example

SapBuffer::GetPitch
int GetPitch();
Remarks
Gets the number of bytes between two consecutive lines of all the buffer resources. This is usually equal to the
number of bytes per line, with possible exceptions for buffers located in video memory.
You can only read the value of this attribute after calling the Create method.
Demo/Example Usage
Not available

SapBuffer::GetPixelDepth, SapBuffer::SetPixelDepth
int GetPixelDepth();
void SetPixelDepth(int pixelDepth);

76 • Basic Class Reference Sapera LT ++ Programmer's Manual

Remarks
Gets/sets the number of significant bits of all the buffer resources. The range of possible values is given by the
SapManager::GetPixelDepthMin, SapManager::GetPixelDepthMax method.
The value of this attribute is only relevant after calling the Create method, during which it is set in one of the
following ways, depending on which SapBuffer constructor was used.
 If using a constructor with a SapXferNode object, the value is set from the pixel depth of this object.
 Otherwise, the value is set according to the current buffer data format.
Demo/Example Usage
Grab LUT Example

SapBuffer::GetSpaceUsed
BOOL GetSpaceUsed(int* pSpaceUsed);
BOOL GetSpaceUsed (int index, int* pSpaceUsed);
Parameters
pSpaceUsed Pointer to the returned space used value for the specified buffer resource
index Buffer resource index
Return Value

Returns TRUE if successful, FALSE otherwise

Remarks

Gets the actual number of data bytes stored in a buffer resource after acquiring an image. This value is
usually equal to the buffer size, which indicates that the transfer was successful. If it is equal to 0, it means
that no data has been acquired yet.
If this value is non-zero, but less than the buffer size, this can indicate some kind of data transfer error. In this
case, monitoring of acquisition and transfer events can give more information about the error.
This value can also be smaller than the buffer size when acquiring variable length data streams.
Also note that this value can also sometimes be equal to the buffer size, even if errors occurred during
acquisition. In this case, monitoring of acquisition and transfer events can help identify possible errors.
If no buffer index is specified, the current index is assumed.
Demo/Example Usage
Not available

SapBuffer::GetState
BOOL GetState(SapBuffer::State* pState);
BOOL GetState(int index, SapBuffer::State* pState);
Parameters
pState Pointer to the returned buffer state, which may be one of the following:
 SapBuffer::StateEmpty The buffer is ready to receive new data
 SapBuffer::StateFull The buffer contains unprocessed data
 SapBuffer::StateOverflow The buffer contains incorrect data due to insufficient hardware

bandwidth. This state can only occur when StateFull is active (the
two values are combined using a bitwise OR).

index Buffer resource index
Return Value

Returns TRUE if successful, FALSE otherwise

Remarks

Gets the current buffer state that indicates whether the specified buffer is ready to accept a new image, or
currently contains unprocessed data.
If no buffer index is specified, the current index is assumed.
Note that Sapera automatically manages the buffer state by default, so that you rarely have to call GetState
directly. If you wish to perform this management yourself, you must first call SapTransfer::SetAutoEmpty.
Demo/Example Usage

Sapera LT ++ Programmer's Manual Basic Class Reference • 77

Not available

SapBuffer::GetType, SapBuffer::SetType
SapBuffer::Type GetType();
BOOL SetType(SapBuffer::Type type);
Remarks
Gets/sets the type of all the buffer resources.
There are many possible initial values for this attribute, if you do not specify it explicitly in the constructor.
 If using the constructor with physical addresses, then this value is TypeContiguous.
 If using the constructor with virtual addresses, then this value is TypeScatterGather.
 If using the constructor with a shared buffer object with width/height/format, then this value is also

TypeScatterGather.
 If using the constructor with a shared buffer object with a starting index and count, then this value is

TypeVirtual.
 Otherwise, the initial value is equal to TypeDefault. It is then set to a valid value (almost always

TypeScatterGather) after calling the Create method
You can only call SetType before the Create method. See the SapBuffer constructor for possible values for
type.
Demo/Example Usage
Color Split Example, File Load MFC Example

SapBuffer::GetWidth, SapBuffer::SetWidth
int GetWidth();
BOOL SetWidth(int width);
Remarks
Gets/sets the width of all the buffer resources.
There are many possible initial values for this attribute, if you do not specify it explicitly in the constructor.
 If using the constructor with a SapXferNode object, then this value is 0, and is then set correctly

from the transfer node object after calling the Create method. In this case, calling SetWidth has no
effect, as the width from the SapXferNode object always takes precedence.

 If using the constructor with a file name, then this value is taken directly from the file.
 If using the constructor with a shared buffer with a starting index and count, then this value is 0. It is

then set correctly from the shared buffer object after calling the Create method.
 Otherwise, the initial value is equal to 640.
You can only call SetWidth before the Create method.
Demo/Example Usage
Color Split Example, File Load MFC Example, GigE Auto-White Balance Example, Grab MFC Example

SapBuffer::IsBufferTypeSupported
static BOOL IsBufferTypeSupported(int serverIndex, SapBuffer::Type bufType);
static BOOL IsBufferTypeSupported(const char* serverName, SapBuffer::Type bufType);
static BOOL IsBufferTypeSupported (SapLocation loc, SapBuffer::Type bufType);
Parameters
serverIndex Index of Sapera server containing the acquisition resource
bufType Type of buffer to check, see the SapBuffer constructor for a list of possible values
serverName Name of Sapera server containing the acquisition resource
loc Valid SapLocation object for the acquisition resource
Return Value
Returns TRUE if the specified buffer type is supported, FALSE otherwise
Remarks
Checks if an acquisition resource supports data transfers to a specific buffer type.

78 • Basic Class Reference Sapera LT ++ Programmer's Manual

For most acquisition hardware, this functionality is not implemented, so it is not possible to determine if the
buffer type is supported, and this method returns TRUE. In this case, an error will be returned when calling the
SapTransfer::Create or SapTransfer::Connect method when trying to set up a transfer to an unsupported
buffer type.
Demo/Example Usage
Bayer Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo,
GigESequential Grab Demo, Grab Demo, Sequential Grab Demo

SapBuffer::IsCapabilityValid
BOOL IsCapabilityValid(int cap);
Parameters
cap Low-level Sapera C library capability to check
Return Value
Returns TRUE if the capability is supported, FALSE otherwise
Remarks
Checks for the availability of a low-level Sapera C library capability for the buffer module. Call this method
before GetCapability to avoid invalid or not available capability errors.
Note that this method is rarely needed. The SapBuffer class already uses important capabilities internally for
self-configuration and validation.
See the Sapera LT Basic Modules Reference Manual for a description of all capabilities and their possible
values.
Demo/Example Usage
Not available

SapBuffer::IsMapped
BOOL IsMapped();
BOOL IsMapped(int index);
Parameters
index Buffer resource index
Return Value

Returns TRUE if there currently exists a valid virtual memory address for the specified buffer resource, FALSE
otherwise
Remarks

This method is only relevant for buffers that are TypeUnmapped or TypeScatterGatherUnmapped. In this case,
the GetAddress method sets up a valid virtual address mapping, and ReleaseAddress ends it. For all other
buffer types, it always returns TRUE.
If no buffer index is specified, the current index is assumed.
Demo/Example Usage
Not available

SapBuffer::IsMultiFormat
BOOL IsMultiFormat();
Return Value

Returns TRUE if the buffer resources are multiformat, FALSE otherwise.

Remarks

Multiformat buffers (for example, SapFormatRGB888_ MONO8 or SapFormatRGB161616_MONO16) contain
two formats within the same buffer, such as RGB and monochrome. Typically, depending on the acquisition
device output, a multiformat buffer contains two images, one with color data and one with IR data.
Use the GetPage, SetPage and SetAllPage functions to manage the current page of the buffer. This only applies
when choosing what format to display when calling the SapView::Show function.
Demo/Example Usage
Not available

Sapera LT ++ Programmer's Manual Basic Class Reference • 79

SapBuffer::IsParameterValid
BOOL IsParameterValid(int param);
Parameters
param Low-level Sapera C library parameter to check
Return Value
Returns TRUE if the parameter is supported, FALSE otherwise
Remark
Checks for the availability of a low-level Sapera C library parameter for the buffer module. Call this method
before GetParameter to avoid invalid or not available parameter errors.
Note that this method is rarely needed. The SapBuffer class already uses important parameters internally for
self-configuration and validation.
See the Sapera LT Basic Modules Reference Manual for a description of all parameters and their possible
values.
Demo/Example Usage
Not available

SapBuffer::Load
BOOL Load(const char* fileName, int bufIndex, int numBuffers = 0, int frameIndex = 0,
const char* options = "-format auto");
Parameters
fileName Name of the image file to load
bufIndex Index of the buffer (or first buffer) in which to load, where –1 is equivalent to the current

index.
numBuffers Maximum number of buffers to load when the file contains a sequence, where a value of 0 is

equivalent to the number of buffers in the current object.
frameIndex Index of first image frame to load when the file contains a sequence
options String containing the loading options. The following are supported:
 "-format bmp" Window bitmap format
 "-format tiff" TIFF format
 "-format jpeg" JPEG format
 "-format jpeg_2000-component

[value] "
JPEG 2000 format. When loading into a monochrome buffer,
specify which color component to load (0 for red, 1 for
green, 2 for blue); otherwise this argument is ignored.

 "-format crc" Teledyne DALSA proprietary format
 "-format raw -width [value]-

height [value] -o [offset] "
Raw data format. You must specify the image width and
height, as well as the offset of image data from the
beginning of the file.

 "-format avi" AVI image sequence format
 "-format auto" Automatic format detection
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Loads an image file into the current buffer. If no options are specified, the format is automatically detected.
If the format is AVI, you may use frameIndex to specify the first frame to load from the file. If numBuffers is
0, the number of frames loaded will not exceed the buffer count.
If the buffer object was constructed using the same fileName (see the SapBuffer constructor), no data
conversion will be performed since the buffer is compatible with the file.
However, if the buffer was not constructed this way, you must first use the SetParametersFromFile method to
make certain that the buffer object is compatible with the file.
Demo/Example Usage
Color Split Example, File Load Console Example

80 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapBuffer::MergeComponents
BOOL MergeComponents(SapBuffer* pSrc,);
BOOL MergeComponents(SapBuffer* pSrc, int dstIndex);
BOOL MergeComponents(SapBuffer *pFirstSrc, SapBuffer *pSecondSrc, SapBuffer *pThirdSrc);
BOOL MergeComponents(SapBuffer *pFirstSrc, SapBuffer *pSecondSrc, SapBuffer *pThirdSrc, int dstIndex);
Parameters
pSrc Source monochrome buffer object
pFirstSrc First source buffer.
pSecondSrc Second source buffer.
pThirdSrc Third source buffer.
dstIndex Destination buffer resource index
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Combines the individual monochrome components from the first three buffer resources of the source object
into the color buffer resource at dstIndex in the current object. Three monochrome buffer objects can also be
merged. If no destination buffer index is specified, the current value is assumed.
The destination and source buffer dimensions must be equal. The output buffer format can be either RGB or
YUV. See the SapBuffer constructor for a list of valid RGB and YUV formats.
If the output buffer format is RGB, then the three input buffer resources must contain the red, green, and blue
components, respectively. If the output buffer format is YUV, then the three input buffer resources must
contain the Y, U, and V components, respectively.
If individual color components have 8-bits or less, then the input format must be SapFormatMono8. If color
components have more than 8-bits, then the input format must be SapFormatMono16.
For multiformat buffers (for example, SapFormat.RGB888_ MONO8 or tRGB161616_MONO16), the function
prototype with 3 destination buffers is used to merge 2 source buffers, the RGB and mono components
(RGB888/MONO8 or RGB161616/MONO16) respectively into the current buffer object; the 3rd source buffer is
ignored.
Demo/Example Usage
Color Split Example

SapBuffer::Next
void Next();
Remarks
Increments the current buffer index. The SapTransfer class calls Next each time an image is acquired to a
buffer. The index wraps around to 0 when it reaches the end of the resource array. It always points to the last
acquired buffer.
Demo/Example Usage
GigE Sequential Grab Demo, Sequential Grab Demo

SapBuffer::Read
BOOL Read(UINT64 offset, int numElements, void* pData);
BOOL Read(int index, UINT64 offset, int numElements, void* pData);
Parameters
offset Starting position within the buffer (in pixels)
numElements Number of pixels to read
pData Destination memory area for pixel values
index Buffer resource index
Return Value

Returns TRUE if successful, FALSE otherwise

Remarks

Sapera LT ++ Programmer's Manual Basic Class Reference • 81

Reads a consecutive series of elements (pixels) from a buffer resource, ignoring line boundaries.
For 1-bit data buffers, the offset must be a multiple of 8, and the memory area must have at least
((numElements + 7) >> 3) bytes.
For buffer formats other than 1-bit, the memory area must have a number of bytes larger than or equal to
numElements times the value returned by the GetBytesPerPixel method.
If no buffer index is specified, the current index is assumed.
Note that reading elements from video memory buffers may be very slow.
Demo/Example Usage
Not available

SapBuffer::ReadElement
BOOL ReadElement(int x, int y, void* pData);
BOOL ReadElement(int index, int x, int y, void* pData);
BOOL ReadElement(int x, int y, SapData* pData);
BOOL ReadElement(int index, int x, int y, SapData* pData);
Parameters
x Horizontal position
y Vertical position
pData Pointer to a destination memory area for the pixel value, or to one of the SapData wrapper classes

for Sapera data elements described in this document
index Buffer resource index
Return Value

Returns TRUE if successful, FALSE otherwise

Remarks

Reads a single element (pixel) from a buffer resource.
If using one of the first two forms of ReadElement, the memory area must have a number of bytes larger than
or equal to the value returned by the GetBytesPerPixel method.
If no buffer index is specified, the current index is assumed.
Reading elements from video memory buffers may be very slow.
Multiformat buffers (for example, SapFormatRGB888_ MONO8 or RGB161616_MONO16) use a SapDataRGBA
object. Function prototypes using a 'void*' data argument use values formatted as B/G/R/Mono. For RGB888_
MONO8 buffers, this a 32-bit value. For RGB161616_MONO16 buffers, this is a 64-bit value.
Demo/Example Usage
Not available

SapBuffer::ReadLine
BOOL ReadLine(int x1, int y1, int x2, int y2, void* pData, int* numRead);
BOOL ReadLine(int index, int x1, int y1, int x2, int y2, void* pData, int* numRead);
Parameters
x1 Starting horizontal position
y1 Starting vertical position
x2 Ending horizontal position
y2 Ending vertical position
pData Destination memory area for pixel values
numRead Returns the number of pixels read along the line
index Buffer resource index
Return Value

Returns TRUE if successful, FALSE otherwise

Remarks

82 • Basic Class Reference Sapera LT ++ Programmer's Manual

Reads one line of buffer elements, from position (x1,y1) to position (x2,y2). Diagonal lines are supported.
The memory area must have a number of bytes larger than or equal to the line length times the value
returned by the GetBytesPerPixel method.
If no buffer index is specified, the current index is assumed.
This method does not support 1-bit buffers.
Reading elements from video memory buffers may be very slow.
Demo/Example Usage
Not available

SapBuffer::ReadRect
BOOL ReadRect(int x, int y, int width, int height, void* pData);
BOOL ReadRect(int index, int x, int y, int width, int height, void* pData);
Parameters
x Left coordinate of rectangle origin
y Top coordinate of rectangle origin
width Rectangle width
height Rectangle height
pData Destination memory area for pixel values
index Buffer resource index
Return Value

Returns TRUE if successful, FALSE otherwise

Remarks

Reads a rectangular region of elements (pixels) from a buffer resource.
For 1-bit data buffers, x and width must be multiples of 8, and the memory area must have at least
((numElements + 7) >> 3) bytes.
For buffer formats other than 1-bit, the memory area must have a number of bytes larger than or equal to
numElements times the value returned by the GetBytesPerPixel method.
If no buffer index is specified, the current index is assumed.
Reading elements from video memory buffers may be very slow.
Demo/Example Usage
Not available

SapBuffer::ReleaseAddress
BOOL ReleaseAddress(void* pData);
BOOL ReleaseAddress(int index, void* pData = NULL);
Parameters
pData Buffer data address to release
index Buffer resource index
Return Value

Returns TRUE if successful, FALSE otherwise

Remarks

Sapera LT ++ Programmer's Manual Basic Class Reference • 83

Ends direct buffer data access through a pointer.
When dealing with buffers located in video memory, you must call ReleaseAddress as soon as possible after
GetAddress; otherwise, you may encounter image display problems, since getting the address prevents the
display hardware from accessing buffer data.
When dealing with buffers that are TypeUnmapped or TypeScatterGatherUnmapped, you should call
ReleaseAddress as soon as possible when you are finished with direct data access. Calling the GetAddress
method causes the actual physical to virtual memory mapping to occur. Releasing the address ends the
memory mapping and may prevent exhaustion of virtual memory resources in the operating system.
For buffer types other than those mentioned above, you do not need to call ReleaseAddress after accessing
buffer data.
If no buffer index is specified, the current index is assumed.
Demo/Example Usage
Not available

SapBuffer::ResetIndex
void ResetIndex();
Remarks
Initializes the current buffer index to the last buffer resource, so that it will be equal to 0 after the next call to
the Next method (from the SapTransfer class). This means that the first buffer resource will then be the
current one.
Note that ResetIndex may be called automatically by the SapTransfer::Init method, if you set its optional
argument to TRUE.
Demo/Example Usage
Not available

SapBuffer::Save
BOOL Save(const char* fileName, const char* options, int bufIndex = -1, int numBuffers = 0);
Parameters
fileName Name of the image file to save
options String containing the saving options. The following are supported:
 "-format bmp" Window bitmap format
 "-format tiff

-compression [none/rle/lzw/jpeg]
-quality [value]"

TIFF format. Compression may be set to none, run-
length encoding, Lempel-Ziv-Welch, or JPEG. For the
latter, you may also set a quality level.

 "-format jpeg
-quality [value]"

JPEG format. The quality level may vary between 1 and
100.

 "-format jpeg_2000
-quality [value]"

JPEG 2000 format. The quality level may vary between 1
and 100, where the latter specifies lossless compression.

 "-format crc" Teledyne DALSA proprietary format
 "-format raw" Raw data format
 "-format avi" AVI image sequence format
bufIndex Index of the first buffer to save when the file contains a sequence, where a value of –1 is

equivalent to the first buffer. If the file contains only one image, then this is the index of the
buffer resource to save and –1 is equivalent to the current index.

numBuffers Number of buffers to save when the file contains a sequence, where a value of 0 is equivalent
to the number of buffers in the current object.

Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Saves one or more buffers to an image file.
If the format is AVI, use the bufIndex and numBuffers arguments to specify the first buffer and the number of
buffers to save. When saving to a file with any other format, the numBuffers argument is ignored. The
maximum supported size for AVI files is 2 Gbytes.

84 • Basic Class Reference Sapera LT ++ Programmer's Manual

Note, multiformat buffers, such as SapFormatRGB888_MONO8 and RGB161616_MONO16, only support saving
in CRC or RAQ format.
Demo/Example Usage
Not available

SapBuffer::SetAllPage
BOOL SetAllPage(int page);
Parameters
page New page number for the buffer resources
Return Value

Returns TRUE if successful, FALSE otherwise

Remarks

Sets the active page (or plane) for all buffer resources in the current object. See also the SetPage method.
You can only change the value of th property before calling the Create method.
Demo/Example Usage
Not available

SapBuffer::SetAllState
BOOL SetAllState(SapBuffer::State state);
Parameters
state New state for the buffer resources. See SapBuffer::GetState method for possible values.
Return Value

Returns TRUE if successful, FALSE otherwise

Remarks

Sets the current state for all buffer resources in the current object. See also the SapBuffer::SetState method.
Demo/Example Usage
Not available

SapBuffer::SetPage
BOOL SetPage(int page);
BOOL SetPage(int index, int page);
Parameters
page New page number for the buffer resource
index Buffer resource index
Return Value

Returns TRUE if successful, FALSE otherwise

Remarks

Sets the active page (or plane) of the current buffer resource.
This applies only to buffer types for which pixel data is stored in separate planes, instead of being packed
together. For example, 8-bit RGB planar (SapFormatRGBP8), 8-bit HSI planar (SapFormatHSIP8) or
multiformat buffer types such as SapFormat:RGB888_MONO8 or RGB161616_MONO16.
The active page only affects image display. For example, if the image format is 8-bit RGB planar and the page
index is 0, then the red component will be displayed. If the index is 1 or 2, then the green and blue
components will be displayed, respectively. For multiformat buffers, 2 pages are used; one for the color part
and one for the mono (IR) part.
If no buffer index is specified, the current index is assumed.
Demo/Example Usage
Not available

SapBuffer::SetParametersFromFile

Sapera LT ++ Programmer's Manual Basic Class Reference • 85

BOOL SetParametersFromFile(const char* fileName, SapBuffer::Type type);
Parameters
fileName Name of a Sapera image file from which to extract buffer attributes
type Type of buffer resources. See the SapBuffer constructor for details.
Remarks
Sets the count, width, height, format, and type of all the buffer resources from an existing Sapera image file to
ensure buffer compatibility.
You can only call SetParametersFromFile before the Create method. You can then use the Load method after
calling Create.
See the SapBuffer constructor for possible values for type.
Demo/Example Usage
Color Split Example

SapBuffer::SetPhysicalAddress
BOOL SetPhysicalAddress(ULONG_PTR physAddress[]);
Parameters
physAddress Array of physical addresses to use when creating buffer resources. See the SapBuffer

constructor for more details.
Remarks
Sets the physical addresses to use for creating buffer resources.
You can only call SetPhysicalAddress before the Create method.
Demo/Example Usage
Color Split Example

SapBuffer::SetState
BOOL SetState(SapBuffer::State state);
BOOL SetState(int index, SapBuffer::State state);
Parameters
state New state for the buffer resource. See the SapBuffer::GetState method for possible values.
index Buffer resource index
Return Value

Returns TRUE if successful, FALSE otherwise

Remarks

Sets the current buffer state that indicates whether the specified buffer is ready to accept a new image, or
currently contains unprocessed data.
If no buffer index is specified, the current index is assumed.
Note that Sapera automatically manages the buffer state by default, so that you rarely have to call SetState
directly. If you wish to perform this management yourself, you must first call SapTransfer::SetAutoEmpty.
Demo/Example Usage
Not available

SapBuffer::SetVirtualAddress
BOOL SetVirtualAddress(void* virtAddress[]);
Parameters
virtAddress Array of virtual addresses to use when creating buffer resources. See the SapBuffer

constructor for more details.
Remarks
Sets the virtual addresses to use for creating buffer resources.
You can only call SetVirtualAddress before the Create method.
Demo/Example Usage

86 • Basic Class Reference Sapera LT ++ Programmer's Manual

Not available

SapBuffer::SplitComponents
BOOL SplitComponents(SapBuffer* pSrc,);
BOOL SplitComponents(SapBuffer* pSrc, int srcIndex);
BOOL SplitComponents(SapBuffer *pFirstDst, SapBuffer *pSecondDst, SapBuffer *pThirdDst);
BOOL SplitComponents(SapBuffer *pFirstDst, SapBuffer *pSecondDst, SapBuffer *pThirdDst, int srcIndex);
Parameters
pSrc Source color buffer object
pFirstDst First destination buffer object.
pSecondDst Second destination buffer object.
pThirdDst Third destination buffer object.
srcIndex Source buffer resource index
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Splits the color buffer resource at srcIndex into its individual monochrome components in the first three buffer
resources of the current object. The color buffer can also be extracted into three separate monochrome buffer
objects. If no source buffer index is specified, the current value is assumed.
The destination buffer dimensions (in the current object) must be equal to or larger than the source buffer
object dimensions. The input buffer format can be either RGB or YUV. See the SapBuffer constructor for a list
of valid RGB and YUV formats.
If the input buffer format is RGB, then the three output buffer resources will contain the red, green, and blue
components, respectively. If the input buffer format is YUV, then the three output buffer resources will contain
the Y, U, and V components, respectively.
If individual color components have 8-bits or less, then the output format (in the current buffer object) must
be SapFormatMono8. If color components have more than 8-bits, then the output format must be
SapFormatMono16.
For multiformat buffers (for example, SapFormatRGB888_ MONO8 or SapFormatRGB161616_MONO16) the
source buffer is the current object; the function prototype with 3 destination buffers is used to extract the RGB
and mono components (RGB888/MONO8 or RGB161616/MONO16) into the first 2 buffer objects; the 3rd
destination buffer is ignored. If no source buffer index is specified, the current value is assumed.
Demo/Example Usage
Color Split Example

SapBuffer::Write
BOOL Write(UINT64 offset, int numElements, void* pData);
BOOL Write(int index, UINT64 offset, int numElements, void* pData);
Parameters
offset Starting position within the buffer (in pixels)
numElements Number of pixels to write
pData Source memory area for pixel values
index Buffer resource index
Return Value

Returns TRUE if successful, FALSE otherwise

Remarks

Writes a consecutive series of elements (pixels) to a buffer resource, ignoring line boundaries.
For 1-bit data buffers, the offset must be a multiple of 8, and the memory area must have at least
((numElements + 7) >> 3) bytes.
For buffer formats other than 1-bit, the memory area must have a number of bytes of at least numElements
times the value returned by the GetBytesPerPixel method.
If no buffer index is specified, the current index is assumed.

Sapera LT ++ Programmer's Manual Basic Class Reference • 87

Writing elements to video memory buffers may be very slow.

Demo/Example Usage
Not available

SapBuffer::WriteElement
BOOL WriteElement(int x, int y, const void* pData);
BOOL WriteElement(int index, int x, int y, const void* pData);
BOOL WriteElement(int x, int y, SapData data);
BOOL WriteElement(int index, int x, int y, SapData data);
Parameters
x Horizontal position
y Vertical position
pData Pointer to a source memory area for the pixel value
data Pixel value represented by one of the SapData wrapper classes for Sapera data elements

described in this document
index Buffer resource index
Return Value

Returns TRUE if successful, FALSE otherwise

Remarks

Writes a single element (pixel) to a buffer resource.
If using one of the first two forms of WriteElement, the memory area must have a number of bytes equal or
larger than the value returned by the GetBytesPerPixel method.
If no buffer index is specified, the current index is assumed.
Writing elements to video memory buffers may be very slow.
Multiformat buffers (for example, SapFormatRGB888_ MONO8 or RGB161616_MONO16) use a SapDataRGBA
object. Function prototypes using a 'void*' data argument use values formatted as B/G/R/Mono. For 8-bit
buffers, this a 32-bit value. For 16-bit buffers, this is a 64-bit value.
Demo/Example Usage
Not available

SapBuffer::WriteLine
BOOL WriteLine(int x1, int y1, int x2, int y2, const void* pData, int* numWritten);
BOOL WriteLine(int index, int x1, int y1, int x2, int y2, const void* pData, int* numWritten);
Parameters
x1 Starting horizontal position
y1 Starting vertical position
x2 Ending horizontal position
y2 Ending vertical position
pData Source memory area for pixel values
numWritten Returns the number of pixels written along the line
index Buffer resource index
Return Value

Returns TRUE if successful, FALSE otherwise

Remarks

Writes one line of buffer elements, from position (x1,y1) to position (x2,y2). Diagonal lines are supported.
The memory area must have a number of bytes larger than or equal to the line length times the value
returned by the GetBytesPerPixel method.
If no buffer index is specified, the current index is assumed.

88 • Basic Class Reference Sapera LT ++ Programmer's Manual

WriteLine does not support 1-bit buffers.
Writing elements to video memory buffers may be very slow.

Demo/Example Usage
Not available

SapBuffer::WriteRect
BOOL WriteRect(int x, int y, int width, int height, const void* pData);
BOOL WriteRect(int index, int x, int y, int width, int height, const void* pData);
Parameters
x Left coordinate of rectangle origin
y Top coordinate of rectangle origin
width Rectangle width
height Rectangle height
pData Source memory area for pixel values
index Buffer resource index
Return Value

Returns TRUE if successful, FALSE otherwise

Remarks

Writes a rectangular region of elements (pixels) to a buffer resource.
For 1-bit data buffers, x and width must be multiples of 8, and the memory area must have at least
((numElements + 7) >> 3) bytes.
For buffer formats other than 1-bit, the memory area must have a number of bytes larger than or equal to
numElements times the value returned by the GetBytesPerPixel method.
If no buffer index is specified, the current index is assumed.
Writing elements to video memory buffers may be very slow.
Demo/Example Usage
Not available

Sapera LT ++ Programmer's Manual Basic Class Reference • 89

SapBufferRoi

The purpose of the SapBufferRoi Class is to create a rectangular Region of Interest (ROI) inside an existing SapBuffer
object. The ROI has the same origin and dimensions for all buffer resources in the object.

You may create multiple instances of this class using the same SapBuffer as a parent; however, the acquisition
hardware dictates the number of maximum simultaneous ROIs when acquiring images.

One typical usage of this class is reducing acquisition bandwidth requirements when only a subset of an image is
needed.

#include <SapClassBasic.h>

SapBufferRoi Class Members
Construction
SapBufferRoi Class constructor
Create Allocates the low-level Sapera resources
Destroy Releases the low-level Sapera resources
Attributes
GetParent
SetParent

Gets/sets the parent SapBuffer object for the ROI

GetRoot Gets the topmost SapBuffer object for the ROI
GetXMin, Gets/sets the left origin for the ROI, relative to the parent object
SetXMin
GetYMin, Gets/sets the top origin for the ROI, relative to the parent object
SetYMin
GetWidth, Gets/sets the width (in pixels) for the ROI
SetWidth
GetHeight, Gets/sets the height (in pixels) for the ROI
SetHeight
SetRoi Sets the ROI origin and dimensions in one step
ResetRoi Sets the ROI origin and dimensions to default values
GetTrash Returns the low-level Sapera handle of the trash buffer resource, if any

90 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapBufferRoi Member Functions
The following are members of the SapBufferRoi Class.

SapBufferRoi::SapBufferRoi
SapBufferRoi(SapBuffer* pParent, int xmin = 0, int ymin = 0, int width = -1, int height = -1);
Parameters
pParent SapBuffer object that represents the parent for the current SapBufferRoi object
xmin Left origin for the ROI, relative to the parent object
ymin Top origin for the ROI, relative to the parent object
width Width (in pixels) of the ROI
height Height (in lines) of the ROI
Remarks
The SapBufferRoi constructor sets up a rectangular Region of Interest (ROI) inside the SapBuffer object
identified by pParent. This ROI has the specified origin and dimensions, up to the whole area of the parent
object.
A value of –1 for the width/height means that the ROI should have the same width/height as the parent buffer.
The constructor does not actually create the low-level Sapera resources. To do this, you must call the Create
method.
Demo/Example Usage
Dual Acquisition Demo

SapBufferRoi::Create
BOOL Create();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Creates all the low-level Sapera resources needed by the current object. Always call this method before
SapTransfer::Create.
Demo/Example Usage
Dual Acquisition Demo

SapBufferRoi::Destroy
BOOL Destroy();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Destroys all low-level Sapera resources used by the current object. Always call this method after
SapTransfer::Destroy.
Demo/Example Usage
Dual Acquisition Demo

SapBufferRoi::GetHeight, SapBufferRoi::SetHeight
int GetHeight();
void SetHeight(int height);
Remarks
Gets/sets the height (in lines) for the ROI. If it has not been specified in the constructor, the value of this
attribute is set to the parent buffer height when calling the Create method.
You can only call SetHeight before the Create method.
Demo/Example Usage
Not available

Sapera LT ++ Programmer's Manual Basic Class Reference • 91

SapBufferRoi::GetParent, SapBuffer::SetParent
SapBuffer* GetParent();
void SetParent(SapBuffer *pParent);
Remarks
Gets/sets the parent buffer object for the ROI. Note that you can only call SetParent before the Create
method.
Demo/Example Usage
Not available

SapBufferRoi::GetRoot
SapBuffer* GetRoot();
Remarks
Gets the topmost SapBuffer object for the ROI.
When there is a one-level ROI hierarchy below the topmost object, then the returned value is the same as for
the GetParent method.
When there is a multi-level ROI hierarchy below the topmost object, then the returned value is the equivalent
of going up the ROI tree by calling GetParent repeatedly until we reach the top.
Demo/Example Usage
Not available

SapBufferRoi::GetTrash
CORBUFFER GetTrash();
Remarks
If the current object has a SapBufferWithTrash parent object, then this method returns the low-level Sapera
handle of the ROI trash buffer resource, which you may then use from the low-level Sapera functionality.
Note that the handle is only valid after you call the Create method.
See the Sapera LT Basic Modules Reference Manual for details on low-level Sapera functionality.
Demo/Example Usage
Dual Acquisition Demo

SapBufferRoi::GetWidth, SapBufferRoi::SetWidth
int GetWidth();
void SetWidth(int width);
Remarks
Gets/sets the width (in pixels) for the ROI. If it has not been specified in the constructor, the value of this
attribute is set to the parent buffer width when calling the Create method.
You can only call SetWidth before the Create method.
Demo/Example Usage
Not available

SapBufferRoi::GetXMin, SapBufferRoi::SetXMin
int GetXMin();
void SetXMin(int xmin);
Remarks
Gets/sets the left origin for the ROI, relative to the parent object. The initial value of this attribute is 0 if it was
not specified in the constructor.
You can only call SetXMin before the Create method.
Demo/Example Usage
Not available

SapBufferRoi::GetYMin, SapBufferRoi::SetYMin

92 • Basic Class Reference Sapera LT ++ Programmer's Manual

int GetYMin();
void SetYMin(int ymin);
Remarks
Gets/sets the top origin for the ROI, relative to the parent object. The initial value of this attribute is 0 if it was
not specified in the constructor.
You can only call SetYMin before the Create method.
Demo/Example Usage
Not available

SapBufferRoi::ResetRoi
BOOL ResetRoi();
Remarks
Sets the ROI origin and dimensions to default values corresponding to the whole buffer area in the parent
object. You can only call ResetRoi before the Create method.
Demo/Example Usage
Not available

SapBufferRoi::SetRoi
BOOL SetRoi(int xmin, int ymin, int width, int height);
BOOL SetRoi(RECT* pRect);
Parameters
xmin Left origin for the ROI, relative to the parent object
ymin Top origin for the ROI, relative to the parent object
width Width (in pixels) of the ROI
height Height (in lines) of the ROI
pRect Pointer to a Windows RECT structure that specifies the four corners of the ROI
Remarks
Sets the ROI origin and dimensions in one step. You can only call SetRoi before the Create method.
Demo/Example Usage
Dual Acquisition Demo

Sapera LT ++ Programmer's Manual Basic Class Reference • 93

SapBufferWithTrash

The SapBufferWithTrash Class is derived from SapBuffer. It creates an additional resource called the trash buffer used
when transferring data in real-time applications.

The trash buffer is an emergency buffer used by the SapTransfer class when the data transfer is faster than a
processing task performed on the buffers. When processing is not fast enough to keep up with the incoming data,
images are transferred temporarily into the trash buffer until stability is reestablished.

#include <SapClassBasic.h>

SapBufferWithTrash Class Members
Construction
SapBufferWithTrash Class constructor
Create Allocates the low-level Sapera resources
Destroy Releases the low-level Sapera resources
Attributes
GetTrashType,
SetTrashType

Gets/sets the buffer type for the trash buffer resource only

GetTrash Returns the low-level Sapera handle of the trash buffer resource

SapBufferWithTrash Member Functions
The following are members of the SapBufferWithTrash Class.

SapBufferWithTrash::SapBufferWithTrash
SapBufferWithTrash(
 int count = 2,
 int width = 640,
 int height = 480,
 SapFormat format = SapFormatMono8,
 SapBuffer::Type type = SapBuffer::TypeScatterGather,
 SapLocation loc = SapLocation::ServerSystem
);
SapBufferWithTrash(
 int count,
 ULONG_PTR physAddress[]
 int width = 640,
 int height = 480,
 SapFormat format = SapFormatMono8,
 SapBuffer::Type type = SapBuffer::TypeContiguous,
);
SapBufferWithTrash (

94 • Basic Class Reference Sapera LT ++ Programmer's Manual

 int count,
 void* virtAddress[]
 int width = 640,
 int height = 480,
 SapFormat format = SapFormatMono8,
 SapBuffer::Type type = SapBuffer::TypeScatterGather,
);
SapBufferWithTrash (
 int count,
 SapXferNode* pSrcNode,
 SapBuffer::Type type = SapBuffer::TypeScatterGather,
 SapLocation loc = SapLocation::ServerSystem
);
SapBufferWithTrash(
 const char* fileName,
 SapBuffer::Type type = SapBuffer::TypeScatterGather
 SapLocation loc = SapLocation::ServerSystem
);
SapBufferWithTrash (
 int count,
 const char* bufName
 int width = 640,
 int height = 480,
 SapFormat format = SapFormatMono8,
 SapBuffer::Type type = SapBuffer::TypeScatterGather,
 SapLocation loc = SapLocation::ServerSystem
);
SapBufferWithTrash (
 int count,
 const char* bufName
 SapXferNode* pSrcNode,
 SapBuffer::Type type = SapBuffer::TypeScatterGather,
 SapLocation loc = SapLocation::ServerSystem);
SapBufferWithTrash (
 const char* bufName
 int startIndex
 int count,
 SapBuffer::Type type = SapBuffer::TypeVirtual,
 SapLocation loc = SapLocation::ServerSystem
);

Parameters
See the SapBuffer constructor for a description of the parameters
Remarks
Derived from SapBuffer, the SapBufferWithTrash object contains an additional resource called the trash buffer
that has the same attributes (width, height, format, and type) as the other buffer resources.
The count argument does not include the trash buffer. Its value cannot be smaller than 2.
The constructor does not actually create the low-level Sapera resources. To do this, you must call the Create
method.
Demo/Example Usage
Bayer Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo, GigE
Sequential Grab Demo, GigE Auto-White Balance Example, GigE Camera LUT Example, Grab Console Example,
Grab MFC Example

SapBufferWithTrash::Create
BOOL Create();
Return Value
Returns TRUE if successful, FALSE otherwise

Sapera LT ++ Programmer's Manual Basic Class Reference • 95

Remarks
Creates all the low-level Sapera resources needed by the SapBufferWithTrash object. Always call this method
before SapTransfer::Create.
Demo/Example Usage
Bayer Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo, GigE
Sequential Grab Demo, GigE Auto-White Balance Example, GigE Camera LUT Example, Grab Console Example,
Grab MFC Example

SapBufferWithTrash::Destroy
BOOL Destroy();
Return Value
Returns TRUE if successful destroyed, FALSE otherwise
Remarks
Destroys all low-level Sapera resources needed by the SapBufferWithTrash object. Always call this method
after SapTransfer::Destroy.
Demo/Example Usage
Bayer Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo, GigE
Sequential Grab Demo, GigE Auto-White Balance Example, GigE Camera LUT Example, Grab Console Example,
Grab MFC Example

SapBufferWithTrash::GetTrash
CORBUFFER GetTrash();
Remarks
Returns the low-level Sapera handle of the trash buffer resource, which you may then use from the low-level
Sapera functionality. Note that the handle is only valid after you call the Create method.
See the Sapera LT Basic Modules Reference Manual for details on low-level Sapera functionality.
Demo/Example Usage
Not available

SapBufferWithTrash::GetTrashType, SapBufferWithTrash::SetTrashType
SapBuffer::Type GetTrashType();
void SetTrashType(SapBuffer::Type type);
Remarks
Gets/sets the buffer type for the trash buffer resource only. This may be useful, for example, if the current
transfer device allows the usage of dummy buffers (SapBuffer::TypeDummy) to reduce bandwidth
requirements associated with trash buffer transfers.
If you do not set a value for this property, then it is set to the same value as the other buffer resources when
calling the Create method
You can only call SetTrashType before the Create method. See the SapBuffer constructor for possible values
for type.
Demo/Example Usage
Not available

96 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapColorConversion

The purpose of the SapColorConversion Class is to support conversion of color images, such as Bayer encoded images
or other color formats, to RGB images for output. In the first case, images are acquired from a Bayer, or other
supported format, camera. They are then converted to RGB either by the acquisition device (if supported) or through
software. In the second case, images are taken from another source (for example, loaded from disk). Only the
software implementation is then available.

This class can perform the following operations:

• Apply color conversion on a raw Bayer Mono8/16 input buffer and get a resulting RGB888/8888 output buffer
(Methods 1-5)

• Apply color conversion on a raw Bi-Color88/1616 input buffer and get a resulting RGB888/8888 output buffer
(Methods 6-7)

• Apply white-balance gain on a RGB/Bayer/Bi-Color input buffer

#include <SapClassBasic.h>

SapColorConversion Class Members
Construction
SapColorConversion Class constructor
Create Allocates the internal resources
Destroy Releases the internal resources
Attributes
GetAcquisition, Gets/sets the acquisition object for acquiring color images
SetAcquisition
GetInputBuffer, Gets/sets the buffer object in which images are acquired or loaded
SetInputBuffer
GetOutputBuffer Gets the buffer object used as the destination for software conversion
GetOutputBufferCount, Gets/sets the number of buffer resources used for software conversion
SetOutputBufferCount
IsEnabled Checks if color conversion is enabled
IsSoftwareEnabled Checks if color conversion in software is enabled
IsSoftwareSupported Checks if the input buffer supports color conversion
IsHardwareEnabled Checks if color conversion in hardware is enabled
IsHardwareSupported Checks if the input buffer supports color conversion
GetAlign Gets/sets the color alignment mode
SetAlign
GetAvailAlign Gets the available alignment modes
GetMethod, Gets/sets the pixel value calculation method
SetMethod
GetAvailMethod Gets the available pixel value calculation methods
GetWBGain, Gets/sets the white balance gain coefficients
SetWBGain
GetWBOffset, Gets/sets the white balance offset coefficients
SetWBOffset

Sapera LT ++ Programmer's Manual Basic Class Reference • 97

GetGamma, Gets/sets the gamma correction factor for the color lookup table
SetGamma
GetOutputFormat, Gets/sets the data output format of color conversion
SetOutputFormat
IsLutEnabled Gets the current color lookup table enable value
IsAcqLut Checks if the color lookup table corresponds to the acquisition LUT
Operations
Enable Enables/disables color conversion
Convert Converts a color-encoded image to an RGB image using software
WhiteBalance Calculates the white balance gain coefficients for color conversion
WhiteBalanceManual Sets the white balance gain coefficients for color conversion
GetLut Gets the current color lookup table
EnableLut Enables/disables the color lookup table

SapColorConversion Member Functions
The following are members of the SapColorConversion Class.

SapColorConversion::SapColorConversion
SapColorConversion();
SapColorConversion(SapAcquisition* pAcq, SapBuffer* pBuffer);
SapColorConversion(SapBuffer* pBuffer);
Parameters
pAcq SapAcquisition object to use for image acquisition and color conversion (if available in hardware)
pBuffer SapBuffer object in which images will be acquired or loaded
Remarks
The SapColorConversion constructor does not actually create the internal resources. To do this, you must call
the Create method.
When using hardware conversion, the result will be stored in the buffer object identified by pBuffer. When
using software conversion, the buffer object for the result of the conversion is automatically created using
relevant attributes from pBuffer.
In both cases, the resulting SapBuffer object will be available through the GetOutputBuffer method.
Demo/Example Usage
Color Conversion Demo, GigE Auto-White Balance Example

SapColorConversion::Convert
BOOL Convert();
BOOL Convert(int srcIndex);
BOOL Convert(int srcIndex, int dstIndex);
Parameters
srcIndex Source buffer resource index
dstIndex Destination buffer resource index
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks

98 • Basic Class Reference Sapera LT ++ Programmer's Manual

Converts a color-encoded image to an RGB image using software.
The source buffer for the conversion is the current buffer resource in the main buffer object, unless you specify
a source index. The GetBuffer method allows you to access this buffer.
The destination buffer for the conversion is the current buffer resource in the internal color buffer object,
unless you specify a destination index. The GetOutputBuffer method allows you to access this buffer.
The color format assigns each pixel in a monochrome image the value of one color channel. RGB images are
created by using neighboring pixel values to get the two missing color channels at each pixel.
Pixels in one row of a color image alternate between the green channel value and either the red or the blue
channel value. The default scheme is shown below.

The missing color channel values are found using neighboring pixel values for the color channel in question by
various methods, some of which are more computationally expensive, but give better image quality when the
input image contains many strong edges.
Demo/Example Usage
Color Conversion Demo

SapColorConversion::Create
BOOL Create();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Creates all the internal resources needed by the color conversion object.
If the color conversion object is associated with a SapAcquisition object (using the SapColorConversion
constructor or the SetAcquisition method), then you can only call this method after the Create method for
the acquisition object.
If there is no acquisition object, then you can only call this method after the Create method for the
associated buffer object instead (specified using the SapColorConversion constructor or the SetBuffer
method).
Demo/Example Usage
Color Conversion Demo, GigE Auto-White Balance Example

SapColorConversion::Destroy
BOOL Destroy();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Destroys all the internal resources needed by the color conversion object
Demo/Example Usage
Color Conversion Demo, GigE Auto-White Balance Example

SapColorConversion::Enable
BOOL Enable(BOOL enable = TRUE, BOOL useHardware = TRUE);
Parameters
enable TRUE to enable color conversion, FALSE to disable it
useHardware TRUE to use hardware conversion, FALSE to use the software implementation
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Enables/disables conversion of color images to RGB. If you set useHardware to TRUE, and hardware

Sapera LT ++ Programmer's Manual Basic Class Reference • 99

conversion is not available, then this method returns FALSE. If you set useHardware to FALSE, then you must
call the Convert method to perform the actual conversion.
Use the SapAcquisition::IsColorConverionsAvailable method to find out if hardware correction is available in
the acquisition device.
Demo/Example Usage
Color Conversion Demo

SapColorConversion::EnableLut
BOOL EnableLut(BOOL enable = TRUE);
Parameters
enable TRUE to enable the color lookup table, FALSE to disable it
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Enables or disables the color lookup table that is applied to image data after color conversion has been
performed.
For hardware conversion, this is actually the acquisition lookup table. For software conversion, the lookup
table is created automatically inside the SapColorConversion object so that it is compatible with the buffer
object on which color conversion is performed.
Demo/Example Usage
Not available

SapColorConversion::GetAcquisition, SapColorConversion::SetAcquisition
SapAcquisition* GetAcquisition();
BOOL SetAcquisition(SapAcquisition* pAcq);
Remarks
Gets/sets the SapAcquisition object to be used for image acquisition and for color conversion. You can only call
SetAcquisition before the Create method.
Demo/Example Usage
Not available

SapColorConversion::GetAlign, SapColorConversion::SetAlign
SapColorConversion::Align GetAlign();
BOOL SetAlign(SapColorConversion::Align align);
Parameters
align Color alignment mode may be one of the following values
 SapColorConversion::AlignGBRG

 SapColorConversion::AlignBGGR

 SapColorConversion::AlignRGGB

 SapColorConversion::AlignGRBG

 SapColorConversion::AlignRGBG
 SapColorConversion::AlignBGRG
Remarks
Gets/sets the color alignment mode, which must correspond to the upper left 2x2 square of the Bayer scheme
of the camera, or 1x4 line for a Bicolor camera.
The initial value for this attribute is SapColorConversion::AlignGRBG. It is then set to the acquisition device

100 • Basic Class Reference Sapera LT ++ Programmer's Manual

color alignment value when calling the Create method (except when no acquisition device is used).
Demo/Example Usage
Color Converions Demo, GigE Auto-White Balance Example

SapColorConversion::GetAvailAlign
SapColorConversion::Align GetAvailAlign();
Remarks
Gets the valid color alignment modes, combined together using bitwise OR.
The initial value for this attribute includes all available modes. It is then set to the valid acquisition device
alignment modes when calling the Create method (except when no acquisition device is used).
See the GetAlign method for a list of possible alignment modes.
Demo/Example Usage
Color Converions Demo

SapColorConversion::GetAvailMethod
SapColorConversion::Method GetAvailMethod();
Remarks
Gets the valid color pixel value calculation methods, combined together using bitwise OR.
The initial value for this attribute includes all available methods. It is then set to the valid acquisition device
calculation methods when calling the Create method (except when no acquisition device is used).
See the GetMethod method for a list of possible calculation methods.
Demo/Example Usage
Color Converions Demo

SapColorConversion::GetGamma, SapColorConversion::SetGamma
float GetGamma();
BOOL SetGamma(float gamma);
Parameters
gamma New gamma correction factor
Remarks
Gets/sets the color gamma correction factor. If color conversion is enabled, and the color lookup table is also
enabled (using the EnableLut method), then Gamma correction with the specified factor is applied after color
conversion has been performed.
The initial value for this attribute is 1.0, which effectively disables Gamma correction.
Demo/Example Usage
Color Converions Demo

SapColorConversion::GetInputBuffer, SapColorConversion::SetInputBuffer
SapBuffer *GetInputBuffer();
BOOL SetInputBuffer(SapBuffer *pBuffer);
Remarks
Gets/sets the SapBuffer object in which images will be acquired or loaded.
For software conversion, the buffer format must be either SapFormatMono8 or SapFormatMono16. The buffer
object with the result of the conversion is then available by calling the GetOutputBuffer method.
For hardware conversion, the buffer format may be SapFormatRGB888, SapFormatRGB8888, or
SapFormatRGB101010 (16-bit input image only). In this case, the buffer object returned by this method is the
same as the one returned by calling the GetInputBuffer method.

Sapera LT ++ Programmer's Manual Basic Class Reference • 101

You can only call SetBuffer before the Create method.
Demo/Example Usage
Color Conversion Demo

SapColorConversion::GetLut
SapLut* GetLut();
Remarks
Gets the current color lookup table that is applied to image data after color conversion has been performed, if
the lookup table has been enabled using the EnableLut method.
For hardware conversion, this is actually the acquisition lookup table, which you may also obtain through the
SapAcquistion::GetLut method. If the acquisition hardware has no lookup table, then the return value is NULL.
For software conversion, the lookup table is created automatically inside the SapColorConversion object so
that it is compatible with the buffer object on which color conversion is performed.
Demo/Example Usage
Not available

SapColorConversion::GetMethod, SapColorConversion::SetMethod
SapColorConversion::Method GetMethod();
BOOL SetMethod(SapColorConversion::Method method);
Parameters
method Color pixel value calculation method may be one of the following values
 SapColorConversion::Method1 Technique based on bilinear interpolation. Fast, but tends to

smooth the edges of the image. Based on a 3x3 neighborhood
operation.
See the Remarks section for more information.

 SapColorConversion::Method2 Proprietary adaptive technique, better for preserving the edges of
the image. However, it works well only when the image has a
strong content in green. Otherwise, little amounts of noise may
be visible within objects.

 SapColorConversion::Method3 Proprietary adaptive technique, almost as good as Method2 for
preserving the edges, but independent of the image content in
green. Small colour artefacts of 1 pixel may be visible at the
edges.

 SapColorConversion::Method4 Technique based on 2x2 interpolation. This is the simplest and
fastest algorithm. Compared to 3x3 it is better at preserving
edge sharpness but introduces a slight jitter in pixel position. In
practice it is a good choice for image display but less
recommended than 3x3 for accurate image processing.

 SapColorConversion::Method5 Technique based on a set of linear filters. It assumes that edges
have a much stronger luminance than chrominance component.

 SapColorConversion::Method7 Support for the Teledyne DALSA Piranha 4 line scan camera color
output. If the appropriate camera firmware is loaded, the driver
will return this value as one of the available methods.

Remarks
Gets/sets the color pixel value calculation method.
The initial value for this attribute is SapColorConversion::Method1. It is then set to the acquisition device color
conversion method when calling the Create method (except when no acquisition device is used).
For SapColorConversion::Method1, four cases are possible according to window position:

G GR

B BG

G GR

R = (R[up] + R[down]) / 2;
G = G
B = (B[left] + B[right]) / 2

102 • Basic Class Reference Sapera LT ++ Programmer's Manual

GR

BG G

R

GR R

R = (R[left,up] + R[right,up] + R[left,down] + R[right,down]) / 4
G = (G[left] + G[right] + G[up] + G[down]) / 4
B = B

G GR

B BG

B BG

R = R
G = (G[left] + G[right] + G[up] + G[down]) / 4
B = (B[left,up] + B[right,up] + B[left,down] + B[right,down]) / 4

GR

BG G

R

BG G

R = (R[left] + R[right]) / 2;
G = G
B = (B[up] + B[down]) / 2

Demo/Example Usage
Color Converions Demo

SapColorConversion::GetOutputBuffer
SapBuffer *GetOutputBuffer();
Remarks
Gets the buffer object used as the destination for software conversion. When using software conversion, this
object is automatically created using relevant attributes from the main buffer object (the one in which images
are acquired or loaded).
When color conversion is performed in hardware, this method returns the same buffer object as the GetBuffer
method.
You cannot call GetOutputBuffer before the Create method.
Demo/Example Usage
Color Conversion Demo

SapColorConversion::GetOutputBufferCount, SapColorConversion::SetOutputBufferCount
int GetOutputBufferCount();
BOOL SetOutputBufferCount(int bufferCount);
Parameters
bufferCount Number of buffer resources
Remarks
Gets/sets the number of buffer resources used for software conversion. The initial value for this attribute is 2.
You can only call SetOutputBufferCount before the Create method.
Demo/Example Usage
Not available

SapColorConversion::GetOutputFormat, SapColorConversion::SetOutputFormat
SapFormat GetOutputFormat();
BOOL SetOutputFormat (SapFormat format);
Parameters
format New color conversion output format
Remarks
Gets/sets the data output format of color conversion. The only two possible values for this attribute are
SapFormatRGB8888 and SapFormatRGB101010.
The initial value for this attribute is SapFormatUnknown. It is then set to the appropriate value when calling

Sapera LT ++ Programmer's Manual Basic Class Reference • 103

the Create method.
You can only call SetOutputFormat before the Create method.
Demo/Example Usage
Color Conversion Demo

SapColorConversion::GetWBGain, SapColorConversion::SetWBGain
SapDataFRGB GetWBGain();
BOOL SetWBGain(SapDataFRGB wbGain);
Parameters
wbGain New white balance gain coefficients
Remarks
Gets/sets the white balance gain coefficients. These may also be calculated automatically using the
WhiteBalance method.
The white balance gain coefficients are the red, green, and blue gains applied to the input image before
filtering. These are used to balance the three color components so that a pure white at the input gives a pure
white at the output. Set all gains to 1.0 if no white balance gain is required.
The initial value for this attribute is 1.0 for each color component.
Demo/Example Usage
Color Conversion Demo

SapColorConversion::GetWBOffset, SapColorConversion::SetWBOffset
SapDataFRGB GetWBOffset();
BOOL SetWBOffset(SapDataFRGB wbOffset);
Parameters
wbOffset New white balance offset coefficients
Remarks
Gets/sets the white balance offset coefficients. These apply only for hardware conversion, that is, when the
IsSoftware method returns FALSE.
The white balance offset coefficients are the red, green, and blue offsets applied to the input image before
filtering. These are used to balance the three color components so that a pure white at the input gives a pure
white at the output. Set all offsets to 0.0 if no white balance offset is required.
The initial value for this attribute is 0.0 for each color component.
Demo/Example Usage
Color Conversion Demo

SapColorConversion::IsAcqLut
BOOL IsAcqLut ();
Remarks
Checks if the color lookup table corresponds to the acquisition LUT. If the return value is FALSE, then a
software lookup table is used instead.
The initial value for this attribute is FALSE. It is then set according to the current acquisition device lookup
table availability when calling the Create method.
Demo/Example Usage
Not available

SapColorConversion::IsEnabled
BOOL IsEnabled();
Remarks
Checks if color conversion is enabled. The initial value for this attribute depends on the acquisition device.
Use the Enable method if you need to enable or disable color conversion.
Demo/Example Usage

104 • Basic Class Reference Sapera LT ++ Programmer's Manual

Color Conversion Demo

SapColorConversion::IsHardwareEnabled
BOOL IsHardwareEnabled();
Remarks
Returns TRUE if hardware conversion is enabled.
Demo/Example Usage
Color Conversion Demo

SapColorConversion::IsHardwareSupported
BOOL IsHardwareSupported();
Remarks
Returns TRUE if the input buffer is compatible with hardware conversion. Supported input buffer formats for
color conversion (Bayer and Bicolor) are SapFormatTypeMono.
Demo/Example Usage
Not available

SapColorConversion::IsLutEnabled
BOOL IsLutEnabled();
Remarks
Gets the current color lookup table enable value. When enabled, this LUT is applied to image data after color
conversion has been performed.
The initial value for this attribute is FALSE. Use the EnableLut method to enable or disable the lookup table.
Demo/Example Usage
Color Conversion Demo

SapColorConversion::IsSoftwareEnabled
BOOL IsSoftwareEnabled();
Remarks
Returns TRUE if software conversion is enabled.
Demo/Example Usage
Not available

SapColorConversion::IsSoftwareSupported
BOOL IsSoftwareSupported();
Remarks
Returns TRUE if the input buffer is compatible with software conversion. Supported input buffer formats for
color conversion (Bayer and Bicolor) are SapFormatTypeMono.
Demo/Example Usage
Not available

SapColorConversion::WhiteBalance
BOOL WhiteBalance(int x, int y, int width, int height);
BOOL WhiteBalance(SapBuffer* pBuffer, int x, int y, int width, int height);
Parameters
x Left coordinate of white balance region of interest
y Top coordinate of white balance region of interest
Width Width of white balance region of interest
Height Height of white balance region of interest
pBuffer Buffer object with the white balance region of interest

Sapera LT ++ Programmer's Manual Basic Class Reference • 105

Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Calculates the white balance gain coefficients needed for color conversion. The region of interest of a color-
encoded image containing a uniformly illuminated white region. The intensity of the pixels should be as high as
possible but not saturated. The coefficients are calculated as follows:

G R = Max(R , G , B) / R

G G = Max(R , G , B) / G

G B = Max(R , G , B) / B

where R , G and B are the average values of each color component calculated on all the pixels of the input
image.
The buffer format must be either SapFormatMono8 or SapFormatMono16. The buffer resource at the current
index in the main buffer object (the one in which images are acquired or loaded) is used, unless you explicitly
specify another buffer object using the pBuffer argument.
Demo/Example Usage
Color Conversion Demo, GigE Auto-White Balance Example

SapColorConversion::WhiteBalanceManual
BOOL WhiteBalanceManual(const SapDataFRGB& wbGain);
Parameters
wbGain Left coordinate of white balance region of interest
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Calculates the white balance gain coefficients needed for color conversion. The region of interest of a color-
encoded image containing a uniformly illuminated white region. The intensity of the pixels should be as high as
possible but not saturated. The coefficients are calculated as follows:

G R = Max(R , G , B) / R

G G = Max(R , G , B) / G

G B = Max(R , G , B) / B

where R , G and B are the average values of each color component calculated on all the pixels of the input
image.
The buffer format must be either SapFormatMono8 or SapFormatMono16. The buffer resource at the current
index in the main buffer object (the one in which images are acquired or loaded) is used, unless you explicitly
specify another buffer object using the pBuffer argument.
Demo/Example Usage
Color Conversion Demo, GigE Auto-White Balance Example

106 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapDisplay

The SapDisplay Class includes functionality to manipulate a display resource. There is at least one such resource for
each display adapter (VGA board) in the system.

Note that SapView objects automatically manage an internal SapDisplay object for the default display resource.
However, you must explicitly manage the object yourself if you need a display resource other than the default one.

#include <SapClassBasic.h>

SapDisplay Class Members
Construction
SapDisplay Class constructor
Create Allocates the low-level Sapera resources
Destroy Releases the low-level Sapera resources
Attributes
GetLocation Gets/sets the location where the display resource is located
SetLocation
GetWidth Gets the width (in pixels) for the current display mode
GetHeight Gets the height (in lines) for the current display mode
GetPixelDepth Gets the number of significant bits per pixel for the current display mode
GetRefreshRate Gets the refresh rate for the current display mode
IsInterlaced Checks if the current display mode is interlaced or progressive
GetType Gets the type of the display (primary or secondary)
GetFormatDetection Gets/sets automatic detection of available offscreen and overlay buffer formats
SetFormatDetection
IsPrimaryVGABoard Checks if the current display belongs to the primary VGA board in the system
IsOffscreenAvailable Checks if offscreen display support of a specific buffer format is available
IsOverlayAvailable Checks if overlay display support of a specific buffer format is available
GetHandle Gets the low-level Sapera handle of the display resource
Operations
GetDC Gets the Windows Device Context corresponding to the entire screen
ReleaseDC Releases the Windows Device Context corresponding to the entire screen
IsCapabilityValid Checks for the availability of a low-level Sapera C library capability
IsParameterValid Checks for the availability of a low-level Sapera C library parameter
GetCapability Gets the value of a low-level Sapera C library capability
GetParameter Gets/sets the value of a low-level Sapera C library parameter
SetParameter

SapDisplay Member Functions
The following are members of the SapDisplay Class.

SapDisplay::SapDisplay

Sapera LT ++ Programmer's Manual Basic Class Reference • 107

SapDisplay();
Remarks
The SapDisplay constructor does not actually create the low-level Sapera resources. To do this, you must call
the Create method. The SapDisplay object’s display resource is always the host server system.
Note that SapView objects automatically manages an internal SapDisplay object for the default display
resource; however, you must explicitly manage the object if you need a display resource other than the
default one.
Demo/Example Usage
Not available

SapDisplay::Create
BOOL Create();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Creates all the low-level Sapera resources needed by the display object.
If you allow a SapView object to automatically manage a SapDisplay object, then you do not need to call this
method; otherwise, you must always call it before the SapView::Create method.
Demo/Example Usage
Not available

SapDisplay::Destroy
BOOL Destroy();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Destroys all the low-level Sapera resources needed by the display object.
If you allow a SapView object to automatically manage a SapDisplay object, then you do not need to call this
method; otherwise, you must always call it after the SapView::Destroy method.
Demo/Example Usage
Not available

SapDisplay::GetCapability
BOOL GetCapability(int cap, void* pValue);
Parameters
cap Low-level Sapera C library capability to read
Pvalue Pointer to capability value to read back
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
This method allows direct read access to low-level Sapera C library capabilities for the display module. It
needs a pointer to a memory area large enough to receive the capability value, which is usually a 32-bit
integer.
You will rarely need to use GetCapability. The SapDisplay Class already uses important capabilities internally
for self-configuration and validation.
See the Sapera LT Basic Modules Reference Manual for a description of all capabilities and their possible
values.
Demo/Example Usage
Not available

SapDisplay::GetDC

108 • Basic Class Reference Sapera LT ++ Programmer's Manual

BOOL GetDC(HDC* pDC);
Parameters
pDC Pointer to display context value
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the Windows Device Context corresponding to the entire screen for the current display object.
Demo/Example Usage
Not available

SapDisplay::GetFormatDetection, SapDisplay::SetFormatDetection
BOOL GetFormatDetection();BOOL SetFormatDetection(BOOL formatDetection);
Remarks
Gets/sets automatic detection of available offscreen and overlay buffer formats.If the value of this attribute is
TRUE, then all offscreen and overlay formats available for creating buffers are automatically detected when
calling the Create method. It is then possible to call the IsOffscreenAvailable and IsOverlayAvaileble methods
to quickly find out if creating such buffers should succeed. The drawback to this detection is that creating a
SapDisplay object takes much longer, and can produce a noticeable flicker effect whenever a SapDisplay
object is created explicitly by the application, or implicitly through a SapView object.While turning off auto
detection solves these issues, the IsOffscreenAvailable and IsOverlayAvailable methods then become useless,
and always return TRUE. In this case, trying to create a buffer of an invalid format generates an error without
any possibility of prior checking.You can only call SetFormatDetection before the Create method. The initial
value for this attribute is TRUE.
Demo/Example Usage
Not available

SapDisplay::GetHandle
CORHANDLE GetHandle();
Remarks
Gets the low-level Sapera handle of the display resource, which you may then use from the low-level Sapera
functionality. The handle is only valid after you call the Create method.See the Sapera LT Basic Modules
Reference Manual for details on low-level Sapera functionality.
Demo/Example Usage
Not available

SapDisplay::GetHeight
int GetHeight();
Remarks
Gets the height (in lines) for the current display mode. This attribute has a value of value of 0 until the Create
method is called.
Demo/Example Usage
Not available

SapDisplay::GetLocation, SapDisplay::SetLocation
SapLocation GetLocation();
BOOL SetLocation(SapLocation location);
Remarks
Gets/sets the location where the display resource is located. This usually corresponds to the system server. A
specific server can also be specified through the SapDisplay constructor.
You can only call SetLocation before the Create method.
Demo/Example Usage
Not available

Sapera LT ++ Programmer's Manual Basic Class Reference • 109

SapDisplay::GetParameter, SapDisplay::SetParameter
BOOL GetParameter(int param, void*pValue);
BOOL SetParameter(int param, int value);
BOOL SetParameter(int param, void* pValue);
Parameters
param Low-level Sapera C library parameter to read or write
pValue Pointer to parameter value to read back or to write
value New parameter value to write
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
These methods allow direct read/write access to low-level Sapera C library parameters for the display module.
The GetParameter method needs a pointer to a memory area large enough to receive the parameter value,
which is usually a 32-bit integer. The first form of SetParameter accepts a 32-bit value for the new value. The
second form takes a pointer to the new value, and is required when the parameter uses more than 32-bits of
storage.
Note that you will rarely need to use these methods. You should first make certain that what you need is not
already supported through the SapDisplay Class. Also, directly setting parameter values may interfere with the
correct operation of the class.
See the Sapera LT Basic Modules Reference Manual for a description of all parameters and their possible
values.
Demo/Example Usage
Not available

SapDisplay::GetPixelDepth
int GetPixelDepth();
Remarks
Gets the number of significant bits per pixel for the current display mode.
The initial value for this attribute is 0. It is then set according to the current display value when calling the
Create method.
Demo/Example Usage
Not available

SapDisplay::GetRefreshRate
int GetRefreshRate();
Remarks
Gets the refresh rate (in Hz) for the current display mode
The initial value for this attribute is 0. It is then set according to the current display value when calling the
Create method.
Demo/Example Usage
Not available

SapDisplay::GetType
SapDisplay::Type GetType();
Return Value
Display type, which can be one of the following values:
 SapDisplay::TypeUnknown Undetermined display type
 SapDisplay::TypeSystem A display under the control of the primary Windows display

driver. It normally displays the Windows Desktop.
 SapDisplay::TypeDuplicate A secondary display that shows the same contents as the

primary Windows VGA display
 SapDisplay::TypeExtended A secondary display that extends the desktop from the primary

110 • Basic Class Reference Sapera LT ++ Programmer's Manual

Windows VGA display
 SapDisplay::TypeIndependent A secondary display that is completely independent from the

primary Windows VGA display
Remarks
Gets the type of the display (primary or secondary) .
The initial value for this attribute is TypeUnknown. It is then set according to the current display value when
calling the Create method.
Demo/Example Usage
Not available

SapDisplay::GetWidth
int GetWidth();
Remarks
Gets the width (in pixels) for the current display mode.
The initial value for this attribute is 0. It is then set according to the current display value when calling the
Create method.
Demo/Example Usage
Not available

SapDisplay::IsCapabilityValid
BOOL IsCapabilityValid(int cap);
Parameters
cap Low-level Sapera C library capability to check
Return Value
Returns TRUE if the capability is supported, FALSE otherwise
Remarks
Checks for the availability of a low-level Sapera C library capability for the display module. Call this method
before GetCapability to avoid invalid or not available capability errors.
Note that this method is rarely needed. The SapDisplay class already uses important capabilities internally for
self-configuration and validation.
See the Sapera LT Basic Modules Reference Manual for a description of all capabilities and their possible
values.
Demo/Example Usage
Not available

SapDisplay::IsInterlaced
BOOL IsInterlaced();
Remarks
Checks if the current display mode is interlaced or progressive (non-interlaced).
The initial value for this property is FALSE. It is then set according to the current display value when calling
the Create method.
Demo/Example Usage
Not available

SapDisplay::IsOffscreenAvailable
BOOL IsOffscreenAvailable(SapFormat format);
Remarks
Checks if offscreen display support is available for a given buffer format. See the SapBuffer constructor for a
list of possible values for format.
You can only call IsOffscreenAvailable after the Create method.
Demo/Example Usage

Sapera LT ++ Programmer's Manual Basic Class Reference • 111

Not available

SapDisplay::IsOverlayAvailable
BOOL IsOverlayAvailable(SapFormat format);
Remarks
Checks if overlay display support is available for a given buffer format. See the SapBuffer constructor for a list
of possible values for format.
You can only call IsOverlayAvailable after the Create method.
Demo/Example Usage
Not available

SapDisplay::IsPrimaryVGABoard
BOOL IsPrimaryVGABoard();
Remarks
Checks if the current display belongs to the primary VGA board in the system.
You can only call IsPrimaryVGABoard after the Create method.
Demo/Example Usage
Not available

SapDisplay::IsParameterValid
BOOL IsParameterValid(int param);
Parameters
param Low-level Sapera C library parameter to check
Return Value
Returns TRUE if the parameter is supported, FALSE otherwise
Remarks
Checks for the availability of a low-level Sapera C library parameter for the display module. Call this method
before GetParameter to avoid invalid or not available parameter errors.
Note that this method is rarely needed. The SapDisplay class already uses important parameters internally for
self-configuration and validation.
See the Sapera LT Basic Modules Reference Manual for a description of all parameters and their possible
values.
Demo/Example Usage
Not available

SapDisplay::ReleaseDC
BOOL ReleaseDC();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Releases the Windows Device Context corresponding to the entire screen for the current display object.
Demo/Example Usage
Not available

112 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapFeature

The purpose of the SapFeature class is to retrieve individual feature information from the SapAcqDevice class. Each
feature supported by SapAcqDevice provides a set of capabilities such as name, type, access mode, and so forth,
which can be obtained through SapFeature. The GetFeatureInfo method of SapAcqDevice gives access to this
information.

#include <SapClassBasic.h>

SapFeature Class Members
Construction
SapFeature Class constructor
Create Allocates the low-level Sapera resources
Destroy Releases the low-level Sapera resources
Attributes
GetLocation Gets/sets the location where the feature resource is located
SetLocation
GetHandle Gets the low-level Sapera handle of the feature resource
General Parameters

GetName Gets the short name of the feature
GetType Gets the data type of the feature
IsStandard Checks if a feature is standard or custom
GetAccessMode Gets the current data access mode for a feature
GetPollingTime Gets the interval of time between two consecutive feature updates
GetToolTip Gets the text which represents the explanation of the feature
GetDescription Gets the text which represents the full description of the feature
GetDisplayName Gets the descriptive name of the feature
GetFloatNotation Gets the notation type to use to display a float type feature
GetFloatPrecision Gets the number of decimal places to display for a float type feature
GetRepresentation Gets the mathematical representation of a integer or float feature
GetSign Checks if an integer/float feature is signed or not
GetSiUnit Gets the physical units representing the feature in the international system

(SI)
GetCategory Gets the category to which the current feature belongs
GetWriteMode Checks if a feature can be modified when the transfer object is connected

and/or acquiring
IsSavedToConfigFile
SetSavedToConfigFile

Checks if a feature is saved to a CCF configuration file

GetSiToNativeExp10 Gets the feature conversion factor from international system (SI) units to
native units

GetVisibility Gets the level of visibility assigned to a feature
GetArrayLength Gets the number of bytes required for an array type feature
GetIncrementType Gets the type of increment for an integer or floating-point feature
GetValidValueCount Get the number of valid values for an integer or floating-point feature which

defines them as a list

Sapera LT ++ Programmer's Manual Basic Class Reference • 113

Integer/float-
Parameters

GetMin Gets the minimum acceptable value for a feature
GetMax Gets the maximum acceptable value for a feature
GetInc Gets the minimum acceptable increment for an integer or a float feature
GetValidValue Gets one of a predefined set of valid values for a feature
Enumeration-Parameters
GetEnumCount Get the number of possible values for a feature which belongs to an

enumerated type
GetEnumString Gets the string value at a specified index for the enumerated type

corresponding to the current feature
GetEnumValue Gets the integer value at a specified index for the enumerated type

corresponding to the current feature
IsEnumEnabled Checks if the enumeration value corresponding to a specified index is enabled
GetEnumStringFromValue Gets the string value corresponding to a specified integer value for the

enumerated type corresponding to the current feature
GetEnumValueFromString Gets the integer value corresponding to a specified string value for the

enumerated type corresponding to the current feature
Selector-Parameters
IsSelector Determines if the value of a feature directly affects other features
GetSelectedFeatureCount Gets the number of features associated with a selector
GetSelectedFeatureIndex Gets the index of a feature associated with a selector
GetSelectedFeatureName Gets the name of a feature associated with a selector
GetSelectingFeatureCount Gets the number of selectors associated with a feature
GetSelectingFeatureIndex Gets the index of a selector associated with a feature
GetSelectingFeatureName Gets the name of a selector associated with a feature

SapFeature Member Functions
The following are members of the SapFeature Class.

SapFeature::SapFeature
SapFeature(SapLocation location = SapLocation::ServerSystem);
Parameters
location SapLocation object specifying where the feature is located. This location must be the same as

that of the SapAcqDevice object from which the feature is retrieved.
Remarks
The SapFeature constructor does not actually create the low-level Sapera resources. To do this, you must call
the SapFeature::Create method. Upon creation the feature object contents are meaningless. To fill-in a feature
object, call the SapAcqDevice::GetFeatureInfo method.
Demo/Example Usage
Camera Events Example, Camera Features Example, Camera Files Example, GigE Auto-White Balance
Example, Grab CameraLink Example

SapFeature::Create
BOOL Create();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Creates all the low-level Sapera resources needed by the feature object. Call this method before using the
object as a parameter to the SapAcqDevice::GetFeatureInfo method.

114 • Basic Class Reference Sapera LT ++ Programmer's Manual

Demo/Example Usage
Camera Events Example, Camera Features Example, Camera Files Example, GigE Auto-White Balance
Example, Grab CameraLink Example

SapFeature::Destroy
BOOL Destroy();
Return Value
Returns TRUE if successful, FALSE otherwise.
Remarks
Destroys all the low-level Sapera resources needed by the feature object.
Demo/Example Usage
Camera Events Example, Camera Features Example, Camera Files Example, GigE Auto-White Balance
Example, Grab CameraLink Example

SapFeature::GetAccessMode
BOOL GetAccessMode(SapFeature::AccessMode* accessMode);
Parameters
accessMode Returned data access mode can be one of the following values:
 SapFeature::

AccessUndefined
Undefined access mode

 SapFeature::
AccessRW

The feature may be read and written. Most features are of this type.

 SapFeature::
AccessRO

The feature can only be read.

 SapFeature::
AccessWO

The feature can only be written. This is the case for some features
which represent commands (or actions) such as ‘TimestampReset’.

 SapFeature::
AccessNP

The feature is not present. The feature is visible in the interface but is
not implemented for this device.

 SapFeature::
AccessNE

The feature is present but currently not enabled. Often used when a
feature depends on another feature’s value.

Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the current data access mode for a feature.
Demo/Example Usage
Camera Features Example, Camera Files Example

SapFeature::GetArrayLength

BOOL GetArrayLength(int* arrayLength);
Parameters
arrayLength Returned array length (in bytes).
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the number of bytes required to store the value of a feature of array type, that is, when the value
returned by the GetType method is SapFeature::TypeArray. You can then create a SapBuffer object with a
height of one line, and a width corresponding to this number of bytes, and then use this buffer when calling
the GetFeatureValue and SetFeatureValue methods in the SapAcqDevice class.
Demo/Example Usage
Not available

Sapera LT ++ Programmer's Manual Basic Class Reference • 115

SapFeature::GetCategory
BOOL GetCategory(char* category, int categorySize);
Parameters
category Buffer for the returned text string. Must be large enough for 64 characters.
categorySize Size of the buffer pointed to by category (in bytes)
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the category to which the current feature belongs. To simplify the classification of a large set of features
from the same SapAcqDevice object, the features are divided into categories. These categories are useful for
presenting a list of features in a graphical user interface.
Demo/Example Usage
Not available

SapFeature::GetDescription
BOOL GetDescription(char* description, int descriptionSize);
Parameters
description Buffer for the returned text string. Must be large enough for 512 characters.
descriptionSize Size of the buffer pointed to by description (in bytes)
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the text which represents the full description of the feature. This information can be used to display
detailed textual information in a graphical user interface.
Demo/Example Usage
Not available

SapFeature::GetDisplayName
BOOL GetDisplayName(char* displayName, int displayNameSize);
Parameters
displayName Buffer for the returned text string. Must be large enough for 64 characters.
displayNameSize Size of the buffer pointed to by displayName (in bytes)
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the descriptive name of the feature. This name can be used for listing features in a graphical user
interface.
Demo/Example Usage
Camera Features Example

SapFeature::GetEnumCount
BOOL GetEnumCount(int* enumCount);
Parameters
enumCount Returned number of enumeration items
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the number of possible values for a feature which belongs to an enumerated type. Use this method along
with the GetEnumString and GetEnumValue methods to enumerate all the items contained within an
enumeration feature.

116 • Basic Class Reference Sapera LT ++ Programmer's Manual

Demo/Example Usage
Camera Features Example

SapFeature::GetEnumString
BOOL GetEnumString(int enumIndex, char* enumString, int enumStringSize);
Parameters
enumIndex Index of the enumeration item (from 0 to the value returned by the GetEnumCount

method, minus 1)
enumString Buffer for the returned text string.
enumStringSize Size of the buffer pointed to by enumString (in bytes)
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the string value at a specified index for the enumerated type corresponding to the current feature. Use
this method along with the GetEnumCount and GetEnumValue methods to enumerate all the items contained
within an enumeration feature.
Demo/Example Usage
Camera Features Example

SapFeature::GetEnumStringFromValue
BOOL GetEnumStringFromValue(int enumValue, char* enumString, int enumStringSize);
Parameters
enumValue Value to look for in the enumeration items
enumString Buffer for the returned text string
enumStringSize Size of the buffer pointed to by enumString (in bytes)
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the string value corresponding to a specified integer value for the enumerated type corresponding to the
current feature. For example you may use this method to retrieve the string corresponding to an enumeration
value returned by the SapAcqDevice::GetFeatureValue method.
Demo/Example Usage
Camera Features Example

SapFeature::GetEnumValue
BOOL GetEnumValue(int enumIndex, int* enumValue);
Parameters
enumIndex Index of the enumeration item (from 0 to the value returned by the GetEnumCount method,

minus 1)
enumValue Returns enumeration value
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the integer value at a specified index for the enumerated type corresponding to the current feature. Use
this method along with the GetEnumCount and GetEnumString methods to enumerate all the items contained
within an enumeration feature.
Demo/Example Usage
Not available

SapFeature::GetEnumValueFromString
BOOL GetEnumValueFromString(const char* enumString, int* enumValue);

Sapera LT ++ Programmer's Manual Basic Class Reference • 117

Parameters
enumString Text string to look for in the enumeration
enumValue Returned integer value
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the integer value corresponding to a specified string value for the enumerated type corresponding to the
current feature. For example you may use this method to retrieve the value corresponding to a known
enumeration string before calling the SapAcqDevice::SetFeatureValue method.
Demo/Example Usage
Not available

SapFeature::GetFloatNotation
BOOL GetFloatNotation(FloatNotation*notation);
Parameters
notation Specifies how the float type feature is displayed. Possible values are:
 SapFeature::FloatNotationFixed Display variable using fixed notation. For exampe,

123.4
 SapFeature::FloatNotationScientific Display variable using scientific notation. For

example, 1.234e-2.
 SapFeature::FloatNotationUndefined Undefined.
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the type of notation to use to display a float type feature.
Demo/Example Usage
Not available

SapFeature::GetFloatPrecision
BOOL GetFloatPrecision(int64 *precision);
Parameters
precision Number of decimal places of a float type feature to display.
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the number of decimal places to display for a float type feature.
Demo/Example Usage
Not available

SapFeature::GetHandle
CORHANDLE GetHandle();
Remarks
Gets the low-level Sapera handle of the feature resource, which you may then use from the low-level Sapera
functionality. The handle is only valid after you call the Create method.See the Sapera LT Basic Modules
Reference Manual for details on low-level Sapera functionality.
Demo/Example Usage
Camera Features Example

SapFeature::GetInc
BOOL GetInc(INT32* incValue);
BOOL GetInc(UINT32* incValue);

118 • Basic Class Reference Sapera LT ++ Programmer's Manual

BOOL GetInc(INT64* incValue);
BOOL GetInc(UINT64* incValue);
BOOL GetInc(float* incValue);
BOOL GetInc(double* incValue);
Parameters
incValue Returned increment value
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the minimum acceptable increment for an integer or a float feature. Some features cannot vary by
increments of 1. Their value must be a multiple of a certain increment. For example the buffer cropping
dimensions might require to be a multiple of 4 in order to optimize the data transfer.
Demo/Example Usage
Not available

SapFeature::GetIncrementType
BOOL GetIncrementType(SapFeature::IncrementType* incrementType);
Parameters
incrementType Returned increment type can be one of the following values:
 SapFeature::

IncrementUndefined
Undefined increment type. This normally means that the acquisition
device to which the feature is associated does not support reading
the value of the increment type.

 SapFeature::
IncrementNone

The feature has no increment. Use the GetMin and GetMax functions
to find out the feature value limits.

 SapFeature::
IncrementLinear

The feature has a fixed increment. Use the GetMin and GetMax
functions to find the feature value limits, and GetInc to find the
increment.

 SapFeature::
IncrementList

The feature has a fixed set of valid values. Use the
GetValidValueCount function to find the number of values, and the
GetValidValue function to enumerate them.

Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the type of increment for an integer or floating-point feature. This is useful for finding out which values
are valid for this feature.
Demo/Example Usage
Camera Features Example

SapFeature::GetLocation, SapFeature::SetLocation
SapLocation GetLocation();
BOOL SetLocation(SapLocation location);
Remarks
Gets/sets the location where the feature resource is located. This location must be the same as that of the
corresponding SapAcqDevice object. A specific location can also be specified through the SapFeature
constructor.
You can only call SetLocation before the Create method.
Demo/Example Usage
Not available

SapFeature::GetMax
BOOL GetMax(INT32* maxValue);
BOOL GetMax(UINT32* maxValue);
BOOL GetMax(INT64* maxValue);
BOOL GetMax(UINT64* maxValue);

Sapera LT ++ Programmer's Manual Basic Class Reference • 119

BOOL GetMax(float* maxValue);
BOOL GetMax(double* maxValue);
Parameters
maxValue Returned maximum value
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the maximum acceptable value for a feature. For integer and floating-point types use the version of the
method corresponding to the type of the feature. For a string type, use the UINT32 version to get the
maximum length of the string (excluding the trailing null character).
Demo/Example Usage
Camera Events Example, Camera Features Example, GigE Auto-White Balance Example, Grab CameraLink
Example

SapFeature::GetMin
BOOL GetMin(INT32* minValue);
BOOL GetMin(UINT32* minValue);
BOOL GetMin(INT64* minValue);
BOOL GetMin(UINT64* minValue);
BOOL GetMin(float* minValue);
BOOL GetMin(double* minValue);
Parameters
minValue Returned minimum value
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the minimum acceptable value for a feature. For integer and floating-point types use the version of the
method corresponding to the type of the feature. For a string type, use the UINT32 version to get the
minimum length of the string (excluding the trailing null character).
Demo/Example Usage
Camera Events Example, Camera Features Example, GigE Auto-White Balance Example, Grab CameraLink
Example

SapFeature::GetName
BOOL GetName(char* name, int nameSize);
Parameters
name Buffer for the returned text string. Must be large enough for 64 characters.
nameSize Size of the buffer pointed to by name (in bytes)
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the short name of the feature. This name can be used with SapAcqDevice method which expect a feature
name. This string should not be used for display in a graphical user interface. Use the GetDisplayName method
instead to provide a more descriptive name.
Demo/Example Usage
Not available

SapFeature::GetPollingTime
BOOL GetPollingTime(int* pollingTime);
Parameters
pollingTime Returned polling time (in milliseconds).
Return Value

120 • Basic Class Reference Sapera LT ++ Programmer's Manual

Returns TRUE if successful, FALSE otherwise
Remarks
Gets the interval of time between two consecutive feature updates. Some read-only features (such as
‘InternalTemperature’) are read internally from the acquisition device at a certain frequency in order to always
stay up to date.
Note that this method is only relevant for acquisition devices which are supported through the Genie
Framework. Other devices do not return a polling time, but instead use internal polling that generates “Feature
Info Changed” events whenever required.
Demo/Example Usage
Not available

SapFeature::GetRepresentation
BOOL GetRepresentation(SapFeature::Representation* representation);
Parameters
representation Returned representation can be one of the following values:
 SapFeature::

RepresentationUndefined
Undefined representation

 SapFeature::
RepresentationLinear

The feature follows a linear scale

 SapFeature::
RepresentationLogarithmic

The feature follows a logarithmic scale

 SapFeature::
RepresentationBoolean

The feature can have two values: zero or non-zero

Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the mathematical representation of a integer or float feature.
Demo/Example Usage
Not available

SapFeature::GetSelectedFeatureCount
BOOL GetSelectedFeatureCount(int* selectedCount);
Parameters
selectedCount Returned number of features associated with the selector, 0 if the current feature is not a

selector.
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Returns the number of features associated with a selector (value returned by IsSelector method is TRUE).
These selected features can be considered as children of the current SapFeature object.
Demo/Example Usage
Not available

SapFeature::GetSelectedFeatureIndex
BOOL GetSelectedFeatureIndex(int selectedIndex, int* featureIndex);
Parameters
selectedIndex Index of the selected feature, relative to the selector, from 0 to the value returned by the

GetSelectedFeatureCount method, minus 1.
featureIndex Returned index of the selected feature, relative to the acquisition device, from 0 to the

value returned by the SapAcqDevice::GetFeatureCount method, minus 1.
Return Value
Returns TRUE if successful, FALSE otherwise

Sapera LT ++ Programmer's Manual Basic Class Reference • 121

Remarks
Returns the acquisition device index of a feature associated with a selector (value returned by the IsSelector
method is TRUE). This feature can be considered as a child of the current SapFeature object.
The number of features associated with the selector is returned by the GetSelectedFeatureCount method.
The returned index can be used by the SapAcqDevice::GetFeatureInfo method to access the corresponding
SapFeature object. The number of features supported by the acquisition device is returned by
the.SapAcqDevice::GetFeatureCount method.
Demo/Example Usage
Not available

SapFeature::GetSelectedFeatureName
BOOL GetSelectedFeatureName(int selectedIndex, char* featureName, int featureNameSize);
Parameters
selectedIndex Index of the selected feature, relative to the selector, from 0 to the value returned by the

GetSelectedFeatureCount method, minus 1.
featureName Acquisition device feature name.
featureNameSize Size (in bytes) of the buffer pointed to by featureName
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Returns the acquisition device name of a feature associated with a selector (value returned by the IsSelector
method is TRUE). This feature can be considered as a child of the current SapFeature object.
The number of features associated with the selector is returned by the GetSelectedFeatureCount method.
The returned name can be used by the SapAcqDevice::GetFeatureInfo method to access the corresponding
SapFeature object. The number of features supported by the acquisition device is returned by
the.SapAcqDevice::GetFeatureCount method.
Demo/Example Usage
Not available

SapFeature::GetSelectingFeatureCount
BOOL GetSelectingFeatureCount(int* selectingCount);
Parameters
selectingCount Returned number of selectors associated with the current feature, 0 if there are no

associated selectors.
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Returns the number of selectors (value returned by IsSelector method is TRUE) associated with a feature.
These selectors can be considered as parents of the current SapFeature object.
Demo/Example Usage
Not available

SapFeature::GetSelectingFeatureIndex
BOOL GetSelectingFeatureIndex(int selectingIndex, int* featureIndex);
Parameters
selectingIndex Index of the selector, relative to the current feature, from 0 to the value returned by the

GetSelectingFeatureCount method, minus 1.
featureIndex Returned index of the selector, relative to the acquisition device, from 0 to the value

returned by the SapAcqDevice::GetFeatureCount method, minus 1.
Return Value
Returns TRUE if successful, FALSE otherwise

122 • Basic Class Reference Sapera LT ++ Programmer's Manual

Remarks
Returns the acquisition device index of a selector (value returned by the IsSelector method is TRUE)
associated with a feature. This selector can be considered as a parent of the current SapFeature object.
The number of selectors associated with a feature is returned by the GetSelectingFeatureCount method.
The returned index can be used by the SapAcqDevice::GetFeatureInfo method to access the corresponding
SapFeature object. The number of features supported by the acquisition device is returned by
the.SapAcqDevice::GetFeatureCount method.
Demo/Example Usage
Not available

SapFeature::GetSelectingFeatureName
BOOL GetSelectingFeatureName(int selectingIndex, char* featureName, int featureNameSize);
Parameters
selectingIndex Index of the selector, relative to the current feature, from 0 to the value returned by the

GetSelectingFeatureCount method, minus 1.
featureName Acquisition device feature name.
featureNameSize Size (in bytes) of the buffer pointed to by featureName
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Returns the acquisition device name of a selector (value returned by the IsSelector method is TRUE)
associated with a feature. This selector can be considered as a parent of the current SapFeature object.
The number of selectors associated with a feature is returned by the GetSelectingFeatureCount method.
The returned name can be used by the SapAcqDevice::GetFeatureInfo method to access the corresponding
SapFeature object. The number of features supported by the acquisition device is returned by
the.SapAcqDevice::GetFeatureCount method.
Demo/Example Usage
Not available

SapFeature::GetSign
BOOL GetSign(SapFeature::Sign* sign);
Parameters
sign Returned sign can be one of the following values:
 SapFeature::SignUndefined Sign is undefined
 SapFeature::Signed The feature is a signed integer of float
 SapFeature::Unsigned The feature is an unsigned integer of float
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the sign of an integer or float feature. This information is useful when reading and writing feature values.
By knowing the sign of the feature value you can cast it to the corresponding C/C++ type.
Demo/Example Usage
Not available

SapFeature::GetSiToNativeExp10
BOOL GetSiToNativeExp10(int* exponent);
Parameters
exponent Returned exponent value (base 10). It can be negative or positive.
Return Value
Returns TRUE if successful, FALSE otherwise

Sapera LT ++ Programmer's Manual Basic Class Reference • 123

Remarks
Gets the exponent for converting the value of a feature from international system (SI) units to native units
(the units used to read/write the feature through the API).
The following equation describes the relation between the two unit systems:

VNATIVE = VSI * 10E

Where V is the value of a feature and E is the current parameter.
Example 1
You want to set the camera exposure time to a known value in seconds. The ‘ExposureTime’ feature is
represented in microseconds. Therefore the current exponent value is 6. If the desired integration time is 0.5
second, then you can compute the actual value for the SapAcqDevice::SetFeatureValue method as follows:
VNATIVE = 0.5*106 = 500000
Example 2
You want to monitor the temperature of the camera sensor. The ‘InternalTemperature’ feature is reported in
degrees Celcius. Therefore the current exponent value is 0. If the feature value returned by the
SapAcqDevice::GetFeatureValue method is 50 then the temperature in Celcius is also equal to 50.
Use the GetSiUnit method to retrieve the international system (SI) units corresponding to the feature to
monitor.
Demo/Example Usage
Camera Events Example, GigE Auto-White Balance Example

SapFeature::GetSiUnit
BOOL GetSiUnit(char* unit, int unitSize);
Parameters
unit Buffer for the returned text string. Must be large enough for 32 characters.
unitSize Size of the buffer pointed to by unit (in bytes)
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the physical units representing the feature in the international system (SI). Examples of units are Volts,
Pixels, Celsius, Degrees, etc. This information is useful to present in a graphical user interface.
Most of the time the units used by the feature (the native units) are NOT the same as SI units, but rather a
multiple of them. For example, the exposure time may be represented in microseconds instead of seconds. To
convert the feature value to the SI units you must use the exponent value provided by the
GetSiToNativeExp10 method.
Demo/Example Usage
Not available

SapFeature::GetToolTip
BOOL GetToolTip(char* tooltip, int tooltipSize);
Parameters
tooltip Buffer for the returned text string. Must be large enough for 256 characters.
tooltipSize Size of the buffer pointed to by tooltip (in bytes)
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the text which represents the explanation of the feature. This information can be used to implement tool
tips in a graphical user interface.
Demo/Example Usage
Not available

SapFeature::GetType

124 • Basic Class Reference Sapera LT ++ Programmer's Manual

BOOL GetType(SapFeature::Type *type);
Parameters
type Returned type can be one of the following values:
 SapFeature::TypeUndefined Undefined type
 SapFeature::TypeInt32 32-bit integer
 SapFeature::TypeInt64 64-bit integer
 SapFeature::TypeFloat 32-bit floating-point
 SapFeature::TypeDouble 64-bit floating-point
 SapFeature::TypeBool Boolean
 SapFeature::TypeEnum Enumeration
 SapFeature::TypeString ASCII character string
 SapFeature::TypeBuffer Sapera LT buffer object (SapBuffer)
 SapFeature::TypeLut Sapera LT look-up table object (SapLut)
 SapFeature::TypeArray Sapera LT buffer object (SapBuffer)
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the data type of the feature.
If the feature is of array type, then the SapBuffer object should have a height of one line, and a width
corresponding to the number of bytes given by the value returned by the GetArrayLength method.
Demo/Example Usage
Camera Features Example

SapFeature::GetValidValue
BOOL GetValidValue(int validValueIndex, INT32* validValue);
BOOL GetValidValue(int validValueIndex, UINT32* validValue);
BOOL GetValidValue(int validValueIndex, INT64* validValue);
BOOL GetValidValue(int validValueIndex, UINT64* validValue);
BOOL GetValidValue(int validValueIndex, float* validValue);
BOOL GetValidValue(int validValueIndex, double* validValue);
Parameters
validValueIndex Index of the valid value, can be any value from 0 to the value returned by the

GetValidValueCount function, minus 1
validValue Returned valid value, must point to a variable of the same type as the feature
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets one of a predefined set of valid values for an integer or floating-point feature which defines them as a
list, that is, the GetIncrementType function returns SapFeature::IncrementList.
Demo/Example Usage
Camera Features Example

SapFeature::GetValidValueCount
BOOL GetValidValueCount(int* validValueCount);
Parameters
validValueCount Returned count of valid values.
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Get the number of valid values for an integer or floating-point feature which defines them as a list, that is, the
GetIncrementType function returns SapFeature::IncrementList. In this case, use the GetValidValue function to

Sapera LT ++ Programmer's Manual Basic Class Reference • 125

enumerate these values.
Demo/Example Usage
Camera Features Example

SapFeature::GetVisibility
BOOL GetVisibility(SapFeature::Visibility* visibility);
Parameters
visibility Returned visibility can be one of the following values:
 SapFeature::

VisibilityUndefined
Undefined visibility level

 SapFeature::
VisibilityBeginner

The feature should be made visible to any user

 SapFeature::
VisibilityExpert

The feature should be made visible to users with a certain level of
expertise

 SapFeature::
VisibilityGuru

Specifies that the feature should be made visible to users with a high
level of expertise

 SapFeature::
VisibilityInvisible

The feature should not be made visible to any user. This level of
visibility is normally used on obsolete or internal features

Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the level of visibility assigned to a feature. This information is useful to classify the features in a graphical
user interface in terms of user expertise.
Demo/Example Usage
Not available

SapFeature::GetWriteMode
BOOL GetWriteMode(SapFeature::WriteMode* writeMode);
Parameters
writeMode Returned write mode can be one of the following values:
 SapFeature::

WriteUndefined
Undefined write mode

 SapFeature::
WriteAlways

The feature can always be written

 SapFeature::
WriteNotAcquiring

The feature can only be written when the transfer object is not
acquiring. If the transfer is currently acquiring you must stop the
acquisition using the SapTransfer.Freeze or SapTransfer.Wait methods
before modifying the feature value.

 SapFeature::
WriteNotConnected

The feature can only be written when the transfer object is not
connected. If the transfer is currently connected you must disconnect it
using the SapTransfer.Disconnect or SapTransfer.Destroy method before
modifying the feature value. After modifying the value reconnect the
transfer object using the SapTransfer.Connect or SapTransfer.Create
method.

Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Checks if a feature can be modified when the corresponding transfer object (SapTransfer) is connected and/or
acquiring. This transfer object is the one which uses the SapAcqDevice object from which the feature object
was read.
Some features like buffer dimensions cannot be changed while data is being transfered to the buffer. Use this
information to prevent an application from changing certain features when the transfer object is connected
and/or acquiring.
Demo/Example Usage

126 • Basic Class Reference Sapera LT ++ Programmer's Manual

Not available

SapFeature::IsEnumEnabled
BOOL IsEnumEnabled(int enumIndex, BOOL* enabled);
Parameters
enumIndex Index of the enumeration item (from 0 to the value returned by the GetEnumCount method,

minus 1)
enabled Returned item enabled value (TRUE or FALSE)
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Checks if the enumeration value corresponding to a specified index is enabled.
Each item in an enumeration is present for all the application duration. However an enumeration item may be
dynamically enabled/disabled according to the value of another feature. Use this function to find out the
enable state of an item at a given time.
Demo/Example Usage
Not available

SapFeature::IsSavedToConfigFile, SapFeature::SetSavedToConfigFile
BOOL IsSavedToConfigFile(BOOL* savedToConfigFile);
BOOL SetSavedToConfigFile(BOOL savedToConfigFile);
Parameters
savedToConfigFile TRUE for allowing the feature to be saved, FALSE otherwise.
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Checks if a feature is saved to a CCF configuration file when calling the SapAcqDevice::SaveFeatures method.
All features are assigned a default behavior. For example, the read-only features are not saved while the
read/write features are. You can, however, change the default behavior. For example a read-only feature such
as ‘InternalTemperature’ is not saved by default. You can set savedToConfigFile to TRUE to force the feature to
be written to the configuration file.
If you force read-only features to be saved those features will not be restored when loading back the CCF file.
The reason is that the features are not writable to the device.
For acquisition devices which are not supported through the Genie Framework, the features saved to the
configuration file are hardcoded and cannot be changed. Therefore these functions have no effect and always
return FALSE.
Demo/Example Usage
Not available

SapFeature::IsSelector
BOOL IsSelector(BOOL* isSelector);
Parameters
isSelector Returns TRUE if the current feature is a selector, FALSE otherwise
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Determines if the value of the current feature directly affects the values of other features, using a one to many
parent-child relationship. For example, if the current feature represents a look-up table index, then the
affected features could represent values associated with one specific look-up table.
In this case, the current feature is called the selector.
Use the following methods to find out which features are associated: GetSelectedFeatureCount,
GetSelectedFeatureIndex, and GetSelectedFeatureName.

Sapera LT ++ Programmer's Manual Basic Class Reference • 127

You can only call IsSelector after the Create method
Demo/Example Usage
Not available

SapFeature::IsStandard
BOOL IsStandard(BOOL* isStandard);
Parameters
isStandard Returns whether the feature is standard (TRUE) or not (FALSE).
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Checks if a feature is standard or custom. Most of the features are standard. However, sometimes custom
features might be provided as part of a special version of an acquisition device driver.
Demo/Example Usage
Not available

128 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapFlatField

The purpose of the SapFlatField Class is to support flat field correction on monochrome images. The first scenario is
where images are acquired from a camera. Flat field correction is then performed either by the acquisition device (if
supported) or through software. The second scenario is where images are taken from another source (for example,
loaded from disk). Only the software implementation is then available.

Flat field correction is the process of eliminating small gain differences between pixels in a sensor, eliminate sensor
hotspots by automatically doing pixel replacement, and also to compensate for light distortion caused by a lens. Flat
field correction data is composed of gain and offset coefficients for each pixel. A sensor exposed to a uniformly lit field
will have no graylevel differences between pixels when calibrated flat field correction is applied to the image.

#include <SapClassBasic.h>

SapFlatField Class Members
Construction
SapFlatField Class constructor
Create Allocates the internal resources
Destroy Releases the internal resources
Attributes
GetAcquisition, Gets/sets the acquisition object for acquiring images and flat-field

correction SetAcquisition
GetAcqDevice, Gets/sets the acquisition device object for acquiring images and flat-field

correction SetAcqDevice
GetBuffer, Gets/sets the buffer object for operating the flat-field correction without

an acquisition object SetBuffer
GetBufferOffset, Gets the buffer objects for the flat-field correction gain and offset

coefficients GetBufferGain
IsClippedGainOffsetDefects Checks if pixels with gain or offset coefficients that reach hardware

limitations are considered to be defective

IsEnabled Checks if flat-field correction is enabled
IsPixelReplacement Checks if replacement of defective pixels is enabled
IsSoftware Checks if flat-field correction is performed in software or using the

hardware
GetCorrectionType, Gets/sets line scan vs area scan correction type
SetCorrectionType
GetVideoType, Gets/sets the acquisition video type (monochrome or color)
SetVideoType
GetBlackPixelPercentage, Gets/sets allowed percentage of black pixels (value 0) in an image when

flat field calibration is done SetBlackPixelPercentage
GetDeviationMaxBlack, Gets/sets the maximum deviation of the calculated coefficients towards

black SetDeviationMaxBlack
GetDeviationMaxWhite, Gets/sets the maximum deviation of the calculated coefficients towards

white SetDeviationMaxWhite
GetGainDivisor, Gets/sets the factor by which a gain coefficient has to be divided for

getting a unitary scale factor. SetGainDivisor
GetGainBase, Gets/sets the gain base used when calculating the gain coefficients

Sapera LT ++ Programmer's Manual Basic Class Reference • 129

SetGainBase
GetOffsetFactor, Gets/sets the multiplication factor applied to the offset coefficients
SetOffsetFactor
GetOffsetMinMax, Gets / sets the minimum and maximum values for computed offset values
SetOffsetMinMax
GetGainMinMax, Gets / sets the minimum and maximum values for computed gain values
SetGainMinMax
GetNumLinesAverage, Gets/sets the number of lines to be averaged in the image used for doing

the calibration before computing the gain and offset coefficients for
linescan video source.

SetNumLinesAverage

GetNumFramesAverage, Gets/sets the number of frames to average for the calibration before
computing the gain and offset coefficients for linescan video source. SetNumFramesAverage

SetRegionOfInterest Specifies the ROI of coefficients to use for software flat-field correction.
ResetRegionOfInterest Resets the ROI to the full image size.
GetVerticalOffset, Gets/sets the vertical line scan averaging offset in a full frame
SetVerticalOffset
Operations
Load Loads gain and offset buffer data from disk files or from existing buffer

objects
Save Saves gain and offset buffer data to disk files
Clear Clears the gain and offset buffers
ReadGainOffsetFromDevice Gets the current flat-field correction coefficients from the acquisition

hardware
ComputeOffset Calculates the flat-field correction offset coefficients
ComputeGain Calculates the flat-field correction gain coefficients
Enable Enables/disables flat-field correction
EnableClippedGainOffsetDefects Enables/disables whether to consider pixels as defective when calculated

gain or offset coefficients reach the hardware limitations.
EnablePixelReplacement Enables/disables replacement of defective pixels
Execute Performs the software implementation of flat-field correction
GetAverage Gets average pixel value and standard deviation for a buffer
GetStats Gets statistics for a buffer subtracted from the offset buffer

SapFlatField Member Functions
The following are members of the SapFlatField Class.

SapFlatField::SapFlatField
SapFlatField();
SapFlatField(SapAcquisition*pAcq);
SapFlatField(SapAcqDevice* pAcqDevice);
SapFlatField(SapBuffer* pBuffer);
Parameters
pAcq SapAcquisition object to be used for image acquisition and for flat-field correction (if

available in hardware). This object typically corresponds to a frame grabber.
pAcqDevice SapAcqDevice object to be used for image acquisition and for flat-field correction (if

available in hardware). This object typically corresponds to a Teledyne DALSA camera,
for example, Genie.

pBuffer SapBuffer object to be used to find out the width, height and format for the flat-field
correction gain and offset buffer objects

Remarks

130 • Basic Class Reference Sapera LT ++ Programmer's Manual

The SapFlatField constructor does not actually create the internal resources. To do this, you must call the
Create method.
By default, there is only one buffer pair for gain and offset coefficients. However, multi-flat field capability is
available with the Sapera PowerPack package (contact sales for more information).
The constructor with a SapBuffer object is used only for offline operation (no acquisition device), so that
only software correction will be available.
Demo/Example Usage
FlatField Demo, GigE FlatField Demo

SapFlatField::Clear
BOOL Clear();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Clears the flat-field correction gain and offset coefficients buffers. The gain coefficients are initialized for
getting a unitary scale factor while the offset coefficients are initialized to 0.
Demo/Example Usage
Not available

SapFlatField::ComputeGain
BOOL ComputeGain(SapBuffer* pBuffer, SapFlatFieldDefects* pDefects,
 BOOL bUseImageMaxValue = TRUE, int numImages = 0);
BOOL ComputeGain(SapBuffer* pBuffer, SapFlatFieldDefects* pDefects, SapData target);
Parameters
pBuffer Pointer to a buffer object containing one or more calibration image(s)
pDefects Pointer to a SapFlatFieldDefects object
bUseImageMaxValue Indicates how to calculate the range of the calibrated output images
numImages Number of images contained in pBuffer to be used for calibration (obsolete)
target Maximum pixel target value for gain coefficient calculation
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Calculates the flat-field correction gain coefficients from one or more calibration image(s).
If bUseImageMaxValue is TRUE, then this method uses the highest actual pixel value of the input buffer as the
maximum output value. Otherwise, it uses the highest possible pixel value, according to the pixel depth (see
the SapBuffer::GetPixelDepth, SapBuffer::SetPixelDepth method).
The target parameter allows application code to specify the maximum output pixel value target for the gain.
For flat-field correction on monochrome images, specify a SapDataMono object for this parameter. For color
images, use a SapDataRGB object with target values for each color channel.
When this method returns, the SapFlatFieldDefects object pointed to by pDefects contains statistics about the
defects found in the gain image. It has the following attributes:
 int GetNumDefects() Number of defective pixels
 int GetNumClusters() Number of defective pixels that are adjacent
 float GetDefectRatio() Ratio between defective pixels and good pixels in percent
Note
The numImages argument is now obsolete, it has been replaced by the SapFlatField::GetNumFramesAverage,
SapFlatField::SetNumFramesAverage functions. However, for backwards compatibility, if this argument is set
to any other value than the default (0), it will override the value set by the SetNumFramesAverage function.
Demo/Example Usage
Not available

SapFlatField::ComputeOffset

Sapera LT ++ Programmer's Manual Basic Class Reference • 131

BOOL ComputeOffset(SapBuffer* pBuffer, int numImages = 0);
Parameters
pBuffer Pointer to buffer object containing a calibration image
numImages Indicates the number of images contained in pBuffer to be used for calibration (obsolete)
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Calculates the flat-field correction offset coefficients from a calibration image.
You must call this method before the ComputeGain method.
Note
The numImages argument is now obsolete, it has been replaced by the SapFlatField::GetNumFramesAverage,
SapFlatField::SetNumFramesAverage functions. However, for backwards compatibility, if this argument is set
to any other value than the default (0), it will override the value set by the SetNumFramesAverage function.
Demo/Example Usage
Not available

SapFlatField::Create
BOOL Create();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Creates all the internal resources needed by the flat-field correction object
Demo/Example Usage
FlatField Demo, GigE FlatField Demo

SapFlatField::Destroy
BOOL Destroy();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Destroys all the internal resources needed by the flat-field correction object
Demo/Example Usage
FlatField Demo, GigE FlatField Demo

SapFlatField::Enable
BOOL Enable(BOOL enable = TRUE, BOOL useHardware = TRUE);
Parameters
Enable TRUE to enable flat-field correction, FALSE to disable it
useHardware TRUE to use hardware correction, FALSE to use the software implementation
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Enables/disables flat-field correction. If you set useHardware to TRUE and hardware correction is not available,
then this method returns FALSE. If you set useHardware to FALSE, then you must call the Execute method to
perform the actual correction.
Demo/Example Usage
FlatField Demo, GigE FlatField Demo

SapFlatField::EnableClippedGainOffsetDefects
BOOL EnableClippedGainOffsetDefects(BOOL enable = TRUE);

132 • Basic Class Reference Sapera LT ++ Programmer's Manual

Parameters
Enable TRUE to consider these pixels as defects, FALSE to disable it
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Enables/disables assignment of a defective flag to pixels that have gain or offset coefficients that reach or go
beyond the supported limits of the hardware or software used to perform the flat-field correction.
If the value of this attribute is TRUE (its initial value), the chosen method to handle defective pixels will be
performed. If FALSE, the gain and offset coefficients for those pixels will be used as-is.
Demo/Example Usage
Not available

SapFlatField::EnablePixelReplacement
BOOL EnablePixelReplacement(BOOL enable = TRUE);
Parameters
Enable TRUE to enable pixel replacement, FALSE to disable it
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Enables/disables replacement of defective pixels.
Pixel replacement is used when calling the Execute method to perform the software implementation of flat-
field correction. If TRUE, then defective pixel values are replaced by the value of a neighboring pixel. This is
usually the one to the left of the current pixel, except for the first column, where the value of the pixel to the
right is used instead.
Demo/Example Usage
FlatField Demo, GigE FlatField Demo

SapFlatField::Execute
BOOL Execute(SapBuffer *pBuffer);
BOOL Execute(SapBuffer *pBuffer, int bufIndex);
Parameters
pBuffer Pointer to a buffer object for performing flat-field correction
bufIndex Buffer resource index
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Performs the software implementation of flat-field correction. If no buffer index is specified, the current index
is assumed.
For each pixel, flat-field correction is performed according to the following formula:
 correctedValue = (originalValue – offset) * (gain / gainDivisor + gain base)
For 8-bit gain coefficients, the gain divisior is typically equal to 128, so that a gain value between 0 and 255
becomes a value between 0 and 2. Use the SetGainDivisor method to change its value.
Demo/Example Usage
FlatField Demo, GigE FlatField Demo

SapFlatField::GetAcquisition, SapFlatField::SetAcquisition
SapAcquisition* GetAcquisition();
BOOL SetAcquisition(SapAcquisition* pAcq);
Remarks
Gets/sets the SapAcquisition object to be used for image acquisition and for flat-field correction. This object
typically corresponds to a frame grabber.

Sapera LT ++ Programmer's Manual Basic Class Reference • 133

You can only call SetAcquisition before the Create method.
Demo/Example Usage
Not available

SapFlatField::GetAcqDevice, SapFlatField::SetAcqDevice
SapAcqDevice* GetAcqDevice();
BOOL SetAcqDevice(SapAcqDevice* pAcqDevice);
Remarks
Gets/sets the SapAcqDevice object to be used for image acquisition and for flat-field correction. This object
typically corresponds to a Teledyne DALSA camera, for example, Genie.
You can only call SetAcquisition before the Create method.
Demo/Example Usage
Not available

SapFlatField::GetAverage
BOOL GetAverage(SapBuffer* pBuffer, SapFlatFieldStats* pStats);
Parameters
pBuffer Pointer to buffer object from which to compute the average
pStats Pointer to a SapFlatFieldStats object for returned statistics
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets average pixel value and standard deviation for a buffer. See the GetStats method for details about the
SapFlatFieldStats class.
Demo/Example Usage
Not available

SapFlatField::GetBlackPixelPercentage, SapFlatField::SetBlackPixelPercentage
float GetBlackPixelPercentage();
BOOL SetBlackPixelPercentage(float percentage);
Parameters
percentage Percentage of black pixels tolerated
Remarks
Gets/sets the allowed percentage of black pixels (with value 0) in an image when flat field calibration is done.
You must set the value of this attribute before calling the ComputeOffset and ComputeGain methods. The
actual result may be better than the requested percentage but never worse.
The initial value for this attribute is 2.0.
Demo/Example Usage
Not available

SapFlatField::GetBuffer, SapFlatField::SetBuffer
SapBuffer* GetBuffer();
BOOL SetBuffer(SapBuffer* pBuffer);
Remarks
Gets/sets the buffer object for operating the flat-field correction without an acquisition object. It is used to find
out the width, height and format for the flat-field correction gain and offset buffer objects.
You can only call SetBuffer before the Create method.
Demo/Example Usage
Not available

SapFlatField::GetBufferOffset, SapFlatField::GetBufferGain

134 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapBuffer* GetBufferOffset();
SapBuffer* GetBufferGain();
BOOL GetBufferOffset(SapBuffer* pBuffer, int bufIndex = 0, int offsetIndex = 0);
BOOL GetBufferGain(SapBuffer* pBuffer, int bufIndex = 0, int gainIndex = 0);
Parameters
pBuffer Existing buffer object for retrieving a copy of the offset or gain buffer data
bufIndex Buffer resource index for pBuffer argument
offsetIndex Offset buffer resource index
gainIndex Gain buffer resource index
Return Value
The methods with a pBuffer and offsetIndex/gainIndex arguments return TRUE if successful, FALSE otherwise
Remarks
The methods with no arguments respectively retrieve a pointer to the SapBuffer objects that contains the flat-
field correction gain and offset coefficients.
The methods with the pBuffer argument can be used to copy the contents of the gain or offset buffer to an
application supplied buffer with a different data format. For example, it may be required to retrieve the 8-bit
version of a 10-bit gain buffer. In this case, if the supplied buffer objects have different data formats,
automatic data conversion takes place whenever possible, with clipping to maximum destination pixel values
in case of overflow.
Demo/Example Usage
Not available

SapFlatField::GetCorrectionType, SapFlatField::SetCorrectionType
SapFlatField::CorrectionType GetCorrectionType();
BOOL SetCorrectionType(SapFlatField::CorrectionType correctionType);
Parameters
correctionType Flat-field correction type may be one of the following values
 SapFlatField::CorrectionTypeField Correction is performed on full frames
 SapFlatField::CorrectionTypeLine Correction is performed on individual lines
 SapFlatField::CorrectionTypeInvalid Invalid correction type
Remarks
Gets/sets the flat-field correction type.
The initial value for this attribute is SapFlatField::CorrectionTypeInvalid. It is then set according to the
acquisition device scan type when calling the Create method. This means that calling SetCorrectionType is only
relevant when no acquisition device is available, that is, when the SapFlatField constructor with a SapBuffer
argument has been used for the current object.
Demo/Example Usage
Not available

SapFlatField::GetDeviationMaxBlack, SapFlatField::SetDeviationMaxBlack
int GetDeviationMaxBlack();
BOOL SetDeviationMaxBlack(int deviationMax);
Remarks
Gets/sets the maximum deviation of the calculated coefficients from the average value towards the black pixel
value so a pixel is not considered as being defective
The initial value for this attribute is 0. It is then set to 25% of the highest possible pixel value when calling the
Create method. This pixel value is calculated either from the acquisition device pixel depth, or from the input
buffer pixel depth, depending on which version of the SapFlatField constructor was used.
The maximum deviation value is used when calculating flat-field correction gain coefficients with the
ComputeGain method.
Demo/Example Usage
Not available

Sapera LT ++ Programmer's Manual Basic Class Reference • 135

SapFlatField::GetDeviationMaxWhite, SapFlatField::SetDeviationMaxWhite
int GetDeviationMaxWhite();
BOOL SetDeviationMaxWhite(int deviationMax);
Remarks
Gets/sets the maximum deviation of the calculated coefficients from the average value towards the white pixel
value so a pixel is not considered as being defective.
The initial value for this attribute is 0. It is then set to 25% of the highest possible pixel value when calling the
Create method. This pixel value is calculated either from the acquisition device pixel depth, or from the input
buffer pixel depth, depending on which version of the SapFlatField constructor was used.
The maximum deviation value is used when calculating flat-field correction gain coefficients with the
ComputeGain method.
Demo/Example Usage
Not available

SapFlatField::GetGainBase, SapFlatField::SetGainBase
int GetGainBase();
BOOL SetGainBase(int gainBase);
Remarks
Gets/sets the gain base used when calculating the gain coefficients.
When using a Teledyne DALSA acquisition device which support hardware-based gain base (for example, Genie
TS), then the initial value for this attribute is only meaningful after calling the Create method, since it is
retrieved from the acquisition hardware itself. In this case, application code should not call SetGainBase at all.
For all other acquisition devices, and also for software based flat-field correction, the initial value for this
attribute is 0, and application code can call SetGainBase if required.
Demo/Example Usage
Not available

SapFlatField::GetGainDivisor, SapFlatField::SetGainDivisor
int GetGainDivisor();
BOOL SetGainDivisor(int gainDivisor);
Remarks
Gets/sets the factor by which the gain coefficients have to be divided for getting a unitary scale factor.
The initial value for this attribute is 128. It is then set to the acquisition device gain divisor value when calling
the Create method.
The SetGainDivisor method should only be used when operating without hardware support.
Demo/Example Usage
Not available

SapFlatField::GetGainMinMax, SapFlatField::SetGainMinMax
void GetGainMinMax(int* pGainMin, int* pGainMax);
BOOL SetGainMinMax(int gainMin, int gainMax);
Parameters
pGainMin Pointer to returned minimum gain value
pGainMax Pointer to returned maximum gain value
Remarks
Gets/sets the minimum and maximum resulting values when computing gain values using the ComputeGain
method.
This is useful when computing the gain values for an acquisition device that has known limitations on these
values.
The initial value for these attributes are 0 and 255.
Demo/Example Usage
Not available

136 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapFlatField::GetNumFramesAverage, SapFlatField::SetNumFramesAverage
int GetNumFramesAverage();
BOOL SetNumFramesAverage(int numFramesAverage);
Remarks
Gets/sets the number of frames to be averaged before computing the flat-field correction gain and offset
coefficients for an areascan video source. The initial value for this attribute is 10. You must call
SetNumFramesAverage before the ComputeOffset and ComputeGain methods.
Demo/Example Usage
Not available

SapFlatField::GetNumLinesAverage, SapFlatField::SetNumLinesAverage
int GetNumLinesAverage();
BOOL SetNumLinesAverage(int numLinesAverage);
Remarks
Gets/sets the number of lines to be averaged in the image used for doing the calibration before computing the
flat-field correction gain and offset coefficients for linescan video source. The initial value for this attribute is
128. You must call SetNumFramesAverage before the ComputeOffset and ComputeGain methods.
Demo/Example Usage
Not available

SapFlatField::GetOffsetFactor , SapFlatField::SetOffsetFactor
double GetOffsetFactor();
BOOL SetOffsetFactor(double offseFactor);
Parameters
offsetFactor Sets the offset factor for the flat field offset coefficient. Possible values are hardware

dependent; refer to the acquisition device documentation for more information.
Remarks
Gets/sets the multiplication factor used when calculating flat field offset coefficients.
When using a Teledyne DALSA acquisition device which support hardware-based offset factor (e.g., Genie TS),
then the initial value for this attribute is only meaningful after calling the Create method, since it is retrieved
from the acquisition hardware itself. In this case, application code should not call SetOffsetFactor at all.
For all other acquisition devices, and also for software based flat-field correction, the initial value for this
attribute is 1, and application code can call SetOffsetFactor if required.
Demo/Example Usage
Not available

SapFlatField::GetOffsetMinMax , SapFlatField::SetOffsetMinMax
void GetOffsetMinMax(int* pOffsetMin, int* pOffsetMax);
BOOL SetOffsetMinMax(int offsetMin, int offsetMax);
Parameters
pOffsetMin Pointer to returned minimum offset value
pOffsetMax Pointer to returned maximum offset value
Remarks
Gets/sets the minimum and maximum resulting values when computing offset values using the ComputeOffset
method.
This is useful when computing the offset values for an acquisition device that has known limitations on these
values.
The initial value for these attributes are 0 and 255.
Demo/Example Usage
Not available

SapFlatField::GetStats

Sapera LT ++ Programmer's Manual Basic Class Reference • 137

BOOL GetStats(SapBuffer* pBuffer, SapFlatFieldStats* pStats);
Parameters
pBuffer Pointer to a buffer object from which to compute the statistics
pStats Pointer to a SapFlatFieldStats object for returned statistics
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Calculates statistics about the image that are used internally to compute the flat-field correction gain and
offset coefficients.
When the method returns, the SapFlatFieldStats object pointed to by pStats contains statistics about the
image. It has the following attributes:
 int GetNumComponents() Returns the number of color components for which statistics were

computed. For a monochrome image, it is 1. For a color image, it is
4, corresponding to the components of the color scheme of the
camera (see the SapColorConversion::GetAlign and
SapColorConversion::SetAlign methods).

 int GetAverage() Returns buffer average
 int GetStdDeviation() Returns buffer standard deviation
 int GetPeakPosition() Returns the peak value position in the histogram used to calculate

the gain coefficients
 int GetLow() Returns the lower bound of the histogram. Pixels below the lower

bound will be assigned a gain of 2.
 int GetHigh() Returns the higher bound of the histogram. Pixels above the higher

bound will be assigned a gain of 1.
 int GetNumPixels() Returns the number of pixels in the histogram between the lower

and the higher bounds
 float GetPixelRatio() Returns the ratio between the number of pixels inside the lower and

the higher bound of the histogram and the number of pixels in the
buffer in percent

All methods except GetNumComponents accept an optional iComponent argument that specifies the
component index for which statistics are retrieved. If not specified, the value of this argument is 0,
corresponding to the first component.
Note that only the GetNumComponents, GetAverage, and GetStdDeviation methods are relevant when the
SapFlatFieldStats object is used in a call to the GetAverage method.
Demo/Example Usage
Not available

SapFlatField::GetVerticalOffset, SapFlatField::SetVerticalOffset
int GetVerticalOffset();
BOOL SetVerticalOffset(int verticalOffset);
Parameters
verticalOffset Vertical offset in lines
Remarks
Gets/sets the vertical line scan averaging offset in a full frame.
The initial value for this attribute is 0. This means that, for line scan acquisition, correction is performed on all
lines. Specify a nonzero value if you need to skip a fixed number of lines at the beginning of each frame.
Demo/Example Usage
Not available

SapFlatField::GetVideoType, SapFlatField::SetVideoType
SapAcquisition::VideoType GetVideoType();
BOOL SetVideoType(SapAcquisition::VideoType videoType, SapColorConversion::Align alignment);
Parameters

138 • Basic Class Reference Sapera LT ++ Programmer's Manual

videoType New acquisition video type (SapAcquisition::VideoMono or SapAcquisition::VideoColor)
alignment Color alignment. Only used when videoType is set to SapAcquisition::VideoColor.

Possible values are:
SapColorConversion::AlignGBRG
SapColorConversion::AlignBGGR
SapColorConversion::AlignRGGB
SapColorConversion::AlignGRBG
SapColorConversion::AlignRGBG
SapColorConversion::AlignBGRG

Remarks
Gets/sets the acquisition video type. The initial value for this attribute is monochrome. If the current flat-field
object is associated with a SapAcquisition or SapAcqDevice object (see the SapFlatField constructor), then the
value is set according to the acquisition video type when calling the Create method.
If the current flat-field object is not associated with an acquisition object, then the object will be used only for
offline operation (no acquisition), so that only software correction will be available. In this case, you should
call SetVideoType before the Create method.
Demo/Example Usage
Not available

SapFlatField::IsClippedGainOffsetDefects
BOOL IsClippedGainOffsetDefects();
Remarks
Checks if pixels with gain or offset coefficient that reach or go beyond the maximum limit are considered to be
defective. The initial value for this attribute is TRUE.
Use the EnableClippedGainOffsetDefects method if you need to explicitly enable or disable this behavior.
Demo/Example Usage
Not available

SapFlatField::IsEnabled
BOOL IsEnabled();
Remarks
Checks if flat-field correction is enabled. The initial value for this attribute depends on the current acquisition
device.
Use the Enable method if you need to explicitly enable or disable flat-field correction.
Demo/Example Usage
FlatField Demo, GigE FlatField Demo

SapFlatField::IsPixelReplacement
BOOL IsPixelReplacement();
Remarks
Checks if replacement of defective pixels is enabled.
Pixel replacement is used when calling the Execute method to perform the software implementation of flat-
field correction. If it is TRUE, then defective pixel values are replaced by the value of a neighboring pixel. This
is usually the one to the left of the current pixel, except for the first column, where the value of the pixel to
the right is used instead.
The initial value for this attribute is TRUE.
Use the EnablePixelReplacement method if you need to explicitly enable or disable this feature.
Demo/Example Usage
FlatField Demo, GigE FlatField Demo

SapFlatField::IsSoftware
BOOL IsSoftware();

Sapera LT ++ Programmer's Manual Basic Class Reference • 139

Remarks
Checks if flat-field correction is performed in software or using the acquisition hardware. To check if your
hardware supports on-board flat field correction, see SapAcquisition::IsFlatFieldAvailable or
SapAcqDevice::IsFlatFieldAvailable. The SapFlatField::Enable useHardware parameter determines if hardware
correction is used.
Demo/Example Usage
FlatField Demo, GigE FlatField Demo

SapFlatField::Load
BOOL Load(const char* fileName);
BOOL Load(SapBuffer* pBufferGain, SapBuffer* pBufferOffset);
Parameters
fileName Name of the image file with the gain and offset parameters
pBufferGain Pointer to buffer object containing the gain values
pBufferOffset Pointer to buffer object containing the offset values
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Loads flat-field correction gain and offset coefficients buffers from disk files or from existing buffer objects.
The specified file must be in TIFF format, and contains the data for both buffers.
Demo/Example Usage
FlatField Demo, GigE FlatField Demo

SapFlatField::ReadGainOffsetFromDevice
BOOL ReadGainOffsetFromDevice();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the current flat-field correction coefficients from the acquisition hardware (frame grabber or camera).
These coefficients can then be accessed using the SapFlatField::GetBufferOffset, SapFlatField::GetBufferGain
methods.
Demo/Example Usage
Not available

SapFlatField::ResetRegionOfInterest
BOOL ResetRegionOfInterest();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Resets the ROI used for flat field calibration and correction to the full image size. The ROI is set using the
SetRegionOfInterest method.
Demo/Example Usage
Not available

SapFlatField::Save
BOOL Save(const char* fileName);
Parameters
fileName Name of the image file with the gain and offset parameters
Return Value
Returns TRUE if successful, FALSE otherwise

140 • Basic Class Reference Sapera LT ++ Programmer's Manual

Remarks
Saves flat-field correction gain and offset coefficients buffers to disk files. The specified file is always written in
TIFF format, no matter which file extension you specify.
Demo/Example Usage
FlatField Demo, GigE FlatField Demo

SapFlatField::SetRegionOfInterest
BOOL SetRegionOfInterest(int leftOffset, int topOffset, int width, int height);
Parameters
leftOffset Left offset, in pixels, of the top left corner of the ROI.
topOffset Top offset, in pixels, of the top left corner of the ROI
width Width in pixels of the ROI.
height Height in pixels of the ROI
Return Value
Returns TRUE if successful, FALSE otherwise
Description
This method is relevant only for software flat field correction, that is, when the IsSoftware method returns
TRUE. It specifies the area to process in the image buffer when you do not need to apply flat-field correction
for the full camera sensor. This method must be called before SapFlatField::Execute. The ROI is also applied
during the calibration phase when calling theComputeGain method and ComputeOffset method, such that
coefficients are only calculated for those pixels within the ROI. The ROI can be reset to the full image size
using theResetRegionOfInterest method.
Note, if the ROI is modified, coefficients must be recalculated.
Demo/Example Usage
Not available

Sapera LT ++ Programmer's Manual Basic Class Reference • 141

SapGio

The purpose of the SapGio Class is to control a block of general inputs and outputs, that is, a group of I/Os that may
be read and/or written all at once. For a TTL level type I/Os, its state is considered ON or active if the measured
voltage on the I/O is 5V (typical).

This class may be used together with SapCounter to associate event counting with the state of specific I/O pins.

Note that acquisition devices do not all support general I/Os.

#include <SapClassBasic.h>

SapGio Class Members
Construction
SapGio Class constructor
Create Allocates the low-level Sapera resources
Destroy Releases the low-level Sapera resources
Attributes
GetLocation, Gets/sets the location where the I/O resource is located
SetLocation
SetCallbackInfo Sets the application callback method for I/O events and the associated context
GetCallback Gets the current application callback method for I/O events
GetContext Gets the application context associated with I/O events
GetNumPins Gets the number of pins present on the I/O resource
GetAvailPinConfig Gets the set of possible configurations for a specific I/O pin or all pins
GetPinConfig, Gets/sets the current configuration for a specific I/O pin or all pins
SetPinConfig
GetPinState, Gets/sets the low/high state of a specific I/O pin or all pins
SetPinState
GetHandle Gets the low-level Sapera handle of the I/O resource
Operations
EnableCallback Allows an application callback function to be called at specific I/O events
DisableCallback Disables calls to the application callback function
AutoTrigger Automatically changes the state of an I/O pin for a specified duration
IsCapabilityValid Checks for the availability of a low-level Sapera C library capability
IsParameterValid Checks for the availability of a low-level Sapera C library parameter
GetCapability Gets the value of a low-level Sapera C library capability
GetParameter Gets/sets the value of a low-level Sapera C library parameter
SetParameter

142 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapGio Member Functions
The following are members of the SapGio Class.

SapGio::SapGio
SapGio(
 SapLocation loc = SapLocation::ServerSystem,
 SapGioCallback pCallback = NULL,
 void* pContext = NULL
);
Parameters
loc SapLocation object specifying the server where the I/O resource is located and the index of

the resource on this server
pCallback Application callback function to be called each time an I/O event happens. The callback

function must be declared as:
void MyCallback(SapGioCallbackInfo *pInfo);

pContext Optional pointer to an application context to be passed to the callback function. If pCallback is
NULL, this parameter is ignored.

Remarks
The SapGio constructor does not actually create the low-level Sapera resources. To do this, you must call
the Create method.
Specifying a callback function in the constructor does not automatically activate it after the call to the
Create method. You must subsequently call the EnableCallback method in order to be notified of I/O events.
Demo/Example Usage
IO Demo

SapGio::AutoTrigger
BOOL AutoTrigger(SapCounter* pCounter, int startCount, int stopCount, int pinMask, int pinState);
Parameters
pCounter Counter object that causes I/O state transitions when reaching startCount and stopCount
startCount Count at which the I/O pins identified by pinMask will change state
stopCount Count at which the I/O pins identified by pinMask will go back to their original state
pinMask Bit field specifying which I/O pins will be affected. The least significant bit corresponds to pin

0, the next bit corresponds to pin 1, and so on. Each bit set to 1 enables the corresponding
pin.

pinState Bit field representing the state of I/O pins identified by pinMask when the counter resource
reaches startCount. The least significant bit corresponds to pin 0, the next bit corresponds to
pin 1, and so on. Bits that are set to 1 represent high, while 0 represents low.

Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Automatically triggers the state of one or more I/O pins at a specific time.
The I/O pins identified by pinMask are initially set to the opposite of the values represented by pinState. When
the counter device reaches startCount, their state changes to the values represented by pinState. When the
counter device reaches stopCount, their state goes back to the original values. This method is not available in
Sapera LT for 64-bit Windows.
Demo/Example Usage
Not available

SapGio::Create
BOOL Create();
Return Value
Returns TRUE if the object was successfully created, FALSE otherwise

Sapera LT ++ Programmer's Manual Basic Class Reference • 143

Remarks
Creates all the low-level Sapera resources needed by the I/O object
Demo/Example Usage
IO Demo

SapGio::Destroy
BOOL Destroy();
Return Value
Returns TRUE if the object was successfully destroyed, FALSE otherwise
Remarks
Destroys all the low-level Sapera resources needed by the I/O object
Demo/Example Usage
IO Demo

SapGio::DisableCallback
BOOL DisableCallback(int pinNumber);
BOOL DisableCallback();
Parameters
pinNumber Pin number on the current I/O resource.
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Disables calls to the application callback function.
The first form of Disable callback only affects the specified I/O pin. The second form affects all pins.
See the SapGio constructor and the EnableCallback method for more details.
Demo/Example Usage
Not available

SapGio::EnableCallback
BOOL EnableCallback(int pinNumber, SapGio::EventType eventType);
BOOL EnableCallback(int pinMask, SapGio::EventType* pEventType);
BOOL EnableCallback(SapGio::EventType eventType);
Parameters
pinNumber Pin number on the current input I/O resource
eventType Type of I/O event that initiates calls to the application callback function, can be one of the

following values:
 SapGio::EventRisingEdge Rising edge of I/O pin state transition (low to high)
 SapGio::EventFallingEdge Falling edge of I/O pin state transition (high to low)
pinMask Bit field specifying which input I/O pins will be affected. The least significant bit corresponds

to pin 0, the next bit corresponds to pin 1, and so on. Each bit set to 1 enables the
corresponding pin.

pEventType Pointer to event types array. This afrgument must point to a memory area large enough to
hold the values for all pins, as found by calling the GetNumPins method.

Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Allows an application callback function to be called at specific input I/O events. See the SapGio constructor for
details about the application callback function.
The first form of EnableCallback may be used using a single input pin number and a corresponding event type.
Use this method together with the version of DisableCallback which takes a pin number argument.
The second form takes a bit mask of affected input I/O pins, and an array pEventType to specify the event

144 • Basic Class Reference Sapera LT ++ Programmer's Manual

associated with each pin. Entries in pEventType corresponding to bits set to 1 in the pinMask argument enable
callbacks for the corresponding pins. Bits set to 0 in pinMask disable callbacks for the corresponding pins.
The third form enables callbacks for all input pins using the same event type. The drawback of using this form
is that it will not be possible to uniquely identify the pin causing the I/O event when the callback function is
called. Use this method together with the version of DisableCallback with no arguments.
Demo/Example Usage
Not available

SapGio::GetAvailPinConfig
BOOL GetAvailPinConfig(int pinNumber, SapGio::PinConfig* pAvailPinConfig);
BOOL GetAvailPinConfig(SapGio::PinConfig* pAvailPinConfig);
Parameters
pinNumber Pin number on the current I/O resource
pAvailPinConfig Pointer to available pin configurations, including one or more of the following (combined

using bitwise OR)
 SapGio::PinInput I/O pin may be configured as an input
 SapGio::PinOutput I/O pin may be configured as an output
 SapGio::PinTristate I/O pin may be tri-stated
 If no pinNumber is specified, then this argument must point to a memory area large

enough to hold the values for all pins, as found by calling the GetNumPins method.
Remarks
Gets the set of possible configurations for a specific I/O pin or all pins. The first form of this method takes a
single pin number, and returns a single value through the pAvailPinConfig argument. The second form returns
the configuration for all pins in the pAvailPinConfig array.
You can only call GetAvailPinConfig after the Create method.
Demo/Example Usage
Not available

SapGio::GetCallback
SapGioCallback GetCallback();
Remarks
Gets the current application callback method for I/O events. The initial value for this attribute is NULL, unless
you specify another value in the constructor.
See the SapGio constructor for more details.
Demo/Example Usage
Not available

SapGio::GetCapability
BOOL GetCapability(int cap, void* pValue);
Parameters
param Low-level Sapera C library capability to read
pValue Pointer to capability value to read back
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
This method allows direct read access to low-level Sapera C library capabilities for the I/O module. It needs a
pointer to a memory area large enough to receive the capability value, which is usually a 32-bit integer.
You will rarely need to use GetCapability. The SapGio Class already uses important capabilities internally for
self-configuration and validation.
See the Sapera LT Basic Modules Reference Manual for a description of all capabilities and their possible
values.
Demo/Example Usage

Sapera LT ++ Programmer's Manual Basic Class Reference • 145

IO Demo

SapGio::GetContext
void* GetContext();
Remarks
Gets the application context associated with I/O events. The initial value for this attribute is NULL, unless you
specify another value in the constructor.
See the SapGio constructor for more details.
Demo/Example Usage
Not available

SapGio::GetHandle
CORHANDLE GetHandle();
Remarks
Gets the low-level Sapera handle of the I/O resource, which you may then use from the low-level Sapera
functionality. The handle is only valid after you call the Create method.
See the Sapera LT Basic Modules Reference Manual for details on low-level Sapera functionality.
Demo/Example Usage
Not available

SapGio::GetLocation,SapGio::SetLocation
SapLocation GetLocation();
BOOL SetLocation(SapLocation location);
Remarks
Gets/sets the location where the I/O resource is located. A specific server can also be specified through the
SapGio constructor.
Demo/Example Usage
Not available

SapGio::GetNumPins
int GetNumPins();
Remarks
Gets the number of pins present on the I/O resource.
The initial value for this attribute is 0. It is then set to the I/O device pin count value when calling the Create
method.
Demo/Example Usage
Not available

SapGio::GetParameter, SapGio::SetParameter
BOOL GetParameter(int param, void* pValue);
BOOL SetParameter(int param, int value);
BOOL SetParameter(int param, void* pValue);

Parameters
param Low-level Sapera C library parameter to read or write

pValue Pointer to parameter value to read back or to write

value New parameter value to write

Return Value
Returns TRUE if successful, FALSE otherwise
Remarks

These methods allow direct read/write access to low-level Sapera C library parameters for the I/O module. The
GetParameter method needs a pointer to a memory area large enough to receive the parameter value, which

146 • Basic Class Reference Sapera LT ++ Programmer's Manual

is usually a 32-bit integer. The first form of SetParameter accepts a 32-bit value for the new value. The second
form takes a pointer to the new value, and is required when the parameter uses more than 32-bits of storage.
Note that you will rarely need to use these methods. You should first make certain that what you need is not
already supported through the SapGio class. Also, directly setting parameter values may interfere with the
correct operation of the class.
See the Sapera LT Basic Modules Reference Manual for a description of all parameters and their possible
values.
Demo/Example Usage
Not available

SapGio::GetPinConfig, SapGio::SetPinConfig
BOOL GetPinConfig(int pinNumber, SapGio::PinConfig* pPinConfig);
BOOL GetPinConfig(SapGio::PinConfig* pPinConfig);
BOOL SetPinConfig(int pinNumber, SapGio::PinConfig pinConfig);
BOOL SetPinConfig(SapGio::PinConfig* pPinConfig);
Parameters
pinNumber Pin number on the current I/O resource (from 0 to the value returned by the GetNumPins

method, minus 1)
pPinConfig Pointer to pin configuration. See SapGio::GetAvailPinConfig method for possible values. If

no pinNumber is specified, then this argument must point to a memory area large enough to
hold the values for all pins, as found by calling the GetNumPins method.

pinConfig New pin configuration. See the SapGio::GetAvailPinConfig method for possible values.
Remarks
Gets/sets the current configuration for a specific I/O pin or all pins.
The first form of GetPinConfig takes a single pin number and returns a single value through the pPinConfig
argument. The second form returns the configuration for all pins in the pPinConfig array.
The first form of SetPinConfig may be used using a single pin number and a corresponding pin configuration.
You may also set pinNumber to the special constant SapGio::AllPins to apply the specified pinConfig to all I/O
pins. The second form of SetPinConfig allows all pins to be set to a different value through the pPinConfig
array argument.
You can only call GetPinConfig and SetPinConfig after the Create method.
Demo/Example Usage
Not available

SapGio::GetPinState, SapGio::SetPinState
BOOL GetPinState(int pinNumber, SapGio::PinState* pPinState);
BOOL GetPinState(SapGio::PinState* pPinState);
BOOL SetPinState (int pinNumber, SapGio::PinState pinState);
BOOL SetPinState (int pinMask, SapGio::PinState* pPinState);
Parameters
pinNumber Pin number on the current I/O resource
pPinState Pointer to pin state, can be one of the following values:
 SapGio::PinLow The I/O pin is low
 SapGio::PinHigh The I/O pin is high
 If no pinNumber is specified in GetPinState, then this argument must point to a memory area

large enough to hold the values for all pins, as found by calling the GetNumPins method.
pinState New pin state. See above for possible values.
pinMask Bit mask specifying which I/O pins will be affected. The least significant bit corresponds to pin

0, the next bit corresponds to pin 1, and so on. Each bit set to 1 enables the corresponding
pin.

Remarks
Gets/sets the current state of a specific I/O pin or all pins.
The first form of GetPinState takes a single pin number and returns a single value through the pPinState
argument. The second form returns the configuration for all pins in the pPinState array.

Sapera LT ++ Programmer's Manual Basic Class Reference • 147

The first form of SetPinState may be used using a single pin number and a corresponding pin state. The
second form takes a bit mask of affected I/O pins, and an array pPinState to specify the state of each pin. Only
entries in pPinState corresponding to bits set to 1 in the pinMask argument are used.
You can only call GetPinState and SetPinState after the Create method.
Demo/Example Usage
Not available

SapGio::IsCapabilityValid
BOOL IsCapabilityValid(int cap);
Parameters
cap Low-level Sapera C library capability to be checked
Return Value
Returns TRUE if the capability is supported, FALSE otherwise
Remarks
Checks for the availability of a low-level Sapera C library capability for the general I/O module. Call this
method before GetCapability to avoid invalid or not available capability errors.
Note that this method is rarely needed. The SapGio class already uses important capabilities internally for self-
configuration and validation.
See the Sapera LT Basic Modules Reference Manual for a description of all capabilities and their possible
values.
Demo/Example Usage
IO Demo

SapGio::IsParameterValid
BOOL IsParameterValid(int param);
Parameters
param Low-level Sapera C library parameter to be checked
Return Value
Returns TRUE if the parameter is supported, FALSE otherwise
Remarks
Checks for the availability of a low-level Sapera C library parameter for the general I/O module. Call this
method before GetParameter to avoid invalid or not available parameter errors.
Note that this method is rarely needed. The SapGio class already uses important parameters internally for
self-configuration and validation.
See the Sapera LT Basic Modules Reference Manual for a description of all parameters and their possible
values.
Demo/Example Usage
Not available

SapGio::SetCallbackInfo
BOOL SetCallbackInfo(SapGioCallback pCallback, void* pContext = NULL);
Remarks
Sets the application callback method for I/O events and the associated context. See the SapGio constructor for
more details.
You can only call SetCallbackInfo before the EnableCallback method.
Demo/Example Usage
Not available

148 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapGioCallbackInfo
The SapGioCallbackInfo Class acts as a container for storing all arguments to the callback function for the SapGio
Class.

#include <SapClassBasic.h>

SapGioCallbackInfo Class Members
Construction
SapGioCallbackInfo Class constructor
Attributes
GetGio Gets the SapGio object associated with I/O events
GetCustomData Gets the data associated with a custom I/O event
GetCustomSize Gets the size of the custom data returned by GetCustomData
GetEventType Gets the I/O events that triggered the call to the application callback
GetEventCount Gets the current count of I/O events
GetEventInfo Gets the low-level Sapera handle of the event info resource
GetContext Gets the application context associated with I/O events
GetGenericParam0 Gets generic parameters supported by some events
GetGenericParam1
GetGenericParam2
GetGenericParam3
GetPinNumber Get the I/O pin number that generated an I/O event
GetAuxiliaryTimestamp Gets the auxiliary timestamp associated with I/O events.
GetHostTimestamp Gets the host timestamp associated with I/O events.

SapGioCallbackInfo Member Functions
The following are members of the SapGioCallbackInfo Class.

SapGioCallbackInfo::SapGioCallbackInfo
SapGioCallbackInfo(
 SapGio* pGio,
 void* pContext,
 SapGio::EventType eventType,
 int eventCount
...int pinNumber
);
SapGioCallbackInfo(
 SapGio *pGio,
 void *pContext,
 COREVENTINFO eventInfo,
 int pinNumber
);

Parameters
pGio SapGio object that calls the callback function
pContext Pointer to the application context
eventType Combination of I/O events. See SapGio::EnableCallback for a list a possible values
eventCount Current I/O event count
pinNumber Current I/O pin number
eventInfo Low-level Sapera handle of the event info resource

Sapera LT ++ Programmer's Manual Basic Class Reference • 149

Remarks
SapGio objects create an instance of this class before each call to the I/O callback method, in order to combine
all function arguments into one container.
SapGio uses this class for reporting of I/O events. The pContext parameter takes the value specified in the
SapGio Class constructor, eventType identifies the combination of events that triggered the call to the callback
function, eventCount increments by one at each call (starting at 1), and pinNumber identifies the I/O pin that
had a state change.
Demo/Example Usage
Not available

SapGioCallbackInfo::GetAuxiliaryTimestamp
BOOL GetAuxiliaryTimestamp(UINT64 *auxTimestamp);
Parameters
auxTimestamp Address of a pointer to receive the auxiliary timestamp
Remarks
Gets the auxiliary timestamp associated with I/O events. Note that not all acquisition devices support this
timestamp. See the device User’s Manual for more information on the availability of this value.
Demo/Example Usage
Not available

SapGioCallbackInfo::GetContext
void *GetContext();
Remarks
Gets the application context associated with I/O events. See the SapGio constructor for more details.
Demo/Example Usage
Not available

SapGioCallbackInfo::GetCustomData
BOOL GetCustomData(void** customData);
Parameters
customData Address of a pointer to receive the address to the data buffer
Remarks
Gets the address of a buffer containing the data associated with a custom I/O event. You must not free the
buffer after you are finished using it.
This functionality is usually not supported, except for special versions of certain acquisition devices. See the
device User’s Manual for more information on availability.
Example
void MyCallback(SapGioCallbackInfo* pInfo)
{
 // Retrieve the data buffer
 void* pCustomData;
 pInfo->GetCustomData(&pCustomData);

 // Use the data buffer
 //...
}
Demo/Example Usage
Not available

SapGioCallbackInfo::GetCustomSize
BOOL GetCustomSize(int* customSize);
Parameters
customSize Address of an integer to return the value
Remarks

150 • Basic Class Reference Sapera LT ++ Programmer's Manual

Gets the size of the custom data returned by the GetCustomData method.
Demo/Example Usage
Not available

SapGioCallbackInfo::GetEventCount
int GetEventCount();
BOOL GetEventCount(int *eventCount);
Parameters
eventCount Address of an integer where the count is written
Remarks
Gets the current count of I/O events. The initial value is 1, and increments after every call to the I/O callback
function.
Demo/Example Usage
Not available

SapGioCallbackInfo::GetEventInfo
COREVENTINFO GetEventInfo();
Remarks
Gets the low-level Sapera handle of the event info resource. You should not use this method unless you need a
handle to the low-level C API to access some functionality not exposed in the C++ API.
Demo/Example Usage
Not available

SapGioCallbackInfo::GetEventType
SapGio::EventType GetEventType();
BOOL GetEventType(SapGio::EventType *eventType);
Parameters
eventType Pointer to the integer variable to hold the event type
Remarks
Gets the combination of I/O events that triggered the call to the application callback. See the SapGio
constructor for the list of possible values.
Demo/Example Usage
Not available

SapGioCallbackInfo::GetGio
SapGio *GetGio();
Remarks
Gets the SapGio object associated with I/O events. See the SapGio constructor for more details.
Demo/Example Usage
Not available

SapGioCallbackInfo::GetGenericParam0
SapGioCallbackInfo::GetGenericParam1
SapGioCallbackInfo::GetGenericParam2
SapGioCallbackInfo::GetGenericParam3
BOOL GetGenericParam0(int* paramValue);
BOOL GetGenericParam1(int* paramValue);
BOOL GetGenericParam2(int* paramValue);
BOOL GetGenericParam3(int* paramValue);
Parameters
paramValue Address of an integer where the parameter value is written

Sapera LT ++ Programmer's Manual Basic Class Reference • 151

Remarks
Gets any of the four generic parameters supported by some I/Or events. You should use aliases instead when
they are available. See the acquisition device User’s Manual for a list of transfer events using generic
parameters.
Demo/Example Usage
Not available

SapGioCallbackInfo::GetHostTimestamp
BOOL GetHostTimestamp(UINT64 *hostTimestamp);
Parameters
hostTimestamp Address of a pointer to receive the host timestamp
Remarks
Gets the host timestamp associated with I/O events. When a registered event is raised, the host timestamp is
retrieved from the host CPU at the kernel level before the callback function executes at the application level.
Under Windows, the value corresponding to the high-resolution performance counter is directly returned. Refer
to the QueryPerformanceCounter and QueryPerformanceFrequency functions in the Windows API
documentation for more details on how to convert this value to time units.
Note that not all acquisition devices support this timestamp. See the device User’s Manual for more
information on the availability of this value.
Demo/Example Usage
Not available

SapGioCallbackInfo::GetPinNumber
int GetPinNumber();
Remarks
Get the I/O pin number that generated an I/O event.
If this number is equal to the special constant SapGio::AllPins, the pin then cannot be uniquely identified. In
this case, use the SapGio::GetState method to get the required pin information.
Demo/Example Usage
Not available

152 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapLocation
The SapLocation Class identifies a Sapera server/resource pair.

A Sapera server is an abstract representation of a physical device like a frame grabber, a processing board, a GigE
camera, or the host computer. In general, a Teledyne DALSA board or GigE camera camera is a server. Resources are
attached to these physical devices. For example, a frame grabber can have one or more acquisition resources.

Sapera Class methods do not always need the server information from SapLocation. In these cases, the resource
index is simply ignored.

#include <SapClassBasic.h>

SapLocation Class Members
Construction
SapLocation Class constructor
Attributes
GetServerIndex Gets the server index
GetServerName Gets the server name
GetResourceIndex Gets the resource index
IsUnknown Checks if neither the server index nor the server name is valid

SapLocation Member Functions
The following are members of the SapLocation Class.

SapLocation::SapLocation
SapLocation();
SapLocation(int serverIndex, int resourceIndex = 0);
SapLocation(const char *serverName, int resourceIndex = 0);
SapLocation(const SapLocation &loc);
SapLocation(const SapLocation &loc, int resourceIndex);
Parameters
serverIndex Sapera server index. There is always one server associated with the host computer at

SapLocation::ServerSystem (index 0).
serverName Sapera server name. The ‘System’ server is associated with the host computer.
resourceIndex Sapera resource index
loc Existing SapLocation object from which server and resource information are to be

extracted.
Remarks
Use the Sapera Configuration utility to find the names and indices of all Sapera servers in your system.
See also the ‘Servers and Resources’ section in the user’s manual for each Sapera hardware product for a list
of all valid server names and resource indices for that product.
The constructor with only the loc argument allows you to reuse the same server and resource information. The
constructor with both loc and resourceIndex allows use to reuse the same server information, while specifying
a different resource index.
Demo/Example Usage
GigE Camera Demo, GigE FlatField Demo, GigE Sequential Grab Demo, IO Demo, GigE Auto-White Balance
Example,. GigE Camera LUT Example, Grab CameraLink Example, Grab Console Example, Grab LUT Example

SapLocation::GetResourceIndex
int GetResourceIndex();
Remarks
Returns the resource index.

Sapera LT ++ Programmer's Manual Basic Class Reference • 153

Demo/Example Usage
Not available

SapLocation::GetServerIndex
int GetServerIndex();
Remarks
Returns the server index. If the returned value is equal to SapLocation::ServerUnknown, it does not
necessarily mean that the object is invalid. In this case, use the GetServerName method instead.
Demo/Example Usage
Not available

SapLocation::GetServerName
char* GetServerName();
Remarks
Returns the server name. If the returned value is an empty string, it does not necessarily mean that the object
is invalid. In this case, use the GetServerIndex method instead.
Demo/Example Usage
Not available

SapLocation::IsUnknown
BOOL IsUnknown();
Remarks
Returns TRUE if neither the server index nor the server name is valid, FALSE otherwise. Although an unknown
SapLocation is usually invalid, it may be useful in some particular cases.
Demo/Example Usage
Not available

154 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapLut

The SapLut Class implements lookup table management. Although you may create and destroy SapLut objects
explicitly in application code, you usually do not have to do this.

If you need to manipulate acquisition lookup tables on a frame grabber, first call the SapAcquisition::GetLut
method_SapAcquisition.Luts_Property to get a valid SapLut object. You may then manipulate the LUT through the
methods in this class, and reprogram it using SapAcquisition::ApplyLutmethod.

If you need to manipulate lookup tables on an acquisition device controlled through the SapAcqDevice class (for
example, a Genie camera), use the SapAcqDevice::GetFeatureValue and SapAcqDevice::SetFeatureValue methods,
both of which provide versions with a SapLut argument.

If you need to manipulate display lookup tables, you may use the same technique, but using the
SapView::GetLut_SapView.Lut_Property and SapView::ApplyLut_SapView.ApplyLut_Method methods instead.

#include <SapClassBasic.h>

SapLut Class Members
Construction
SapLut Class constructor
Create Allocates the low-level Sapera resources
Destroy Releases the low-level Sapera resources
Attributes
GetLocation, Gets/sets the location where the LUT resource is located
SetLocation
GetNumEntries Gets/sets the number of LUT entries
SetNumEntries
GetFormat, Gets/sets the LUT data format
SetFormat
GetElementSize Gets the number of bytes required to store a single LUT element
GetNumPages Gets the number of color planes in the LUT
IsSigned Checks if the LUT contains signed or unsigned data
GetTotalSize Gets the total number of bytes required to store LUT data
GetHandle Gets the low-level Sapera handle of the LUT resource
Operations
Read Reads one or more elements from LUT storage to user-allocated memory
Write Writes one or more elements from user-allocated memory to LUT storage
Arithmetic Modifies all LUT entries using an arithmetic operation
BinaryPattern Modifies some LUT entries based on a binary pattern
Boolean Modifies all LUT entries using a Boolean operation
Gamma Modifies all LUT entries using Gamma correction
Normal Modifies all LUT entries using a linear mapping with a positive slope
Reverse Modifies all LUT entries using a linear mapping with a negative slope
Roll Relocates LUT entries upwards or downwards as one block
Shift Modifies all LUT entries using a logical shift
Slope Modifies part of a LUT with a linear mapping
Threshold Modifies all LUT entries using a threshold operation

Sapera LT ++ Programmer's Manual Basic Class Reference • 155

Copy Copies all LUT entries to another LUT resource
Load Loads LUT entries from a file
Save Saves LUT entries to a file
GetParameter, Gets/sets the value of a low-level Sapera C library parameter
SetParameter

SapLut Member Functions
The following are members of the SapLut Class.

SapLut::SapLut
SapLut(
 int numEntries = 256,
 SapFormat format = SapFormatUint8,
 SapLocation loc = SapLocation::ServerSystem
);
SapLut(
 const char *filename,
 SapLocation loc = SapLocation::ServerSystem
);
Parameters
numEntries Number of LUT entries
format Data format for the LUT resource, can be one of the following values.
 Monochrome (unsigned)

SapFormatMono8
SapFormatMono9
...
SapFormatMono15
SapFormatMono16

8-bit
9-bit
...
15-bit
16-bit

 Monochrome (unsigned)
SapFormatInt8
SapFormatInt9
...
SapFormatInt15
SapFormatInt16

8-bit
9-bit
...
15-bit
16-bit

 Color (non-interlaced)
SapFormatColorNI8
SapFormatColorNI9
...
SapFormatColorNI15
SapFormatColorNI16

8-bit
9-bit
...
15-bit
16-bit

 Color (interlaced)
SapFormatColorI8
SapFormatColorI9
...
SapFormatColorI15
SapFormatColorI16

8-bit
9-bit
...
15-bit
16-bit

loc SapLocation object specifying the server where the LUT resource is located and the index of
the resource on this server

filename String containing the name of a Sapera LUT file from which to extract the numEntries and
format parameters.

Remarks
The SapLut constructor does not actually create the low-level Sapera resources. To do this, you must call the
Create method.
For non-interlaced color formats, the red/green/blue components for one LUT element are stored separately:
 RRR ... RRR Red components of all elements

156 • Basic Class Reference Sapera LT ++ Programmer's Manual

 GGG ... GGG Green components of all elements
 BBB ... BBB Blue components of all elements
For interlaced color formats, the red/green/blue components for one LUT element are stored together:
 RGBRGBRGB First three elements

 RGBRGBRGB Last three elements
The constructor is automatically called from the SapAcquisition Class so that acquisition lookup tables may be
managed automatically. You just need to call the SapAcquisition::GetLut and SapAcquisition::ApplyLut
methods, together with the functionality in this class, for all required LUT manipulations.
If you need to manage the LUTs for acquisition hardware which uses the SapAcqDevice class (for example, a
Genie camera), use the SapAcqDevice::GetFeatureValue and SapAcqDevice::SetFeatureValue methods, both
of which provide versions with a SapLut argument.
The SapView Class also manages display LUTs automatically in a similar way to SapAcquisition.
Demo/Example Usage
GigE Camera LUT Example, Grab LUT Example

SapLut::Arithmetic
BOOL Arithmetic(SapLut::ArithmeticOp operation, SapData value);
Parameters
operation Specifies how to modify LUT data elements. The following operations are available:
 SapLut::Add Addition with saturation: data[index] = min(maxValue, data[index] + value)
 SapLut::Asub Absolute subtraction: data[index] = abs(data[index] – value)
 SapLut::Max Maximum value: data[index] = max(data[index], value)
 SapLut::Min Minimum value: data[index] = min(data[index], value)
 SapLut::Scale Scale to smaller maximum value: data[index] = (data[index] * value) /

maxValue
 SapLut::Sub Subtraction with saturation: data[index] = max(minValue, data[index] – value)
value Source value object
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Modifies all LUT entries using an arithmetic operation. The value must be either a SapDataMono or
SapDataRGB object, depending on the LUT format.
Demo/Example Usage
GigE Camera LUT Example, Grab LUT Example

SapLut::BinaryPattern
BOOL BinaryPattern(int bitNumber, SapData newValue);
Parameters
bitNumber Bit number that identifies the indices of the LUT data elements to modify
newValue Source value object
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Modifies some LUT entries based on a binary pattern. Only the entries with indices that have the bitNumber bit
set are modified using newValue. Each entry is calculated as follows:
 data[index] = (index & (1 << bitNumber)) ? newValue : data[index]
The value must be either a SapDataMono or SapDataRGB object, depending on the LUT format.
Demo/Example Usage
GigE Camera LUT Example, Grab LUT Example

Sapera LT ++ Programmer's Manual Basic Class Reference • 157

SapLut::Boolean
BOOL Boolean(SapLut::BooleanOp operation, SapData value);
Parameters
operation Specifies how to modify LUT data elements. The following operations are available:
 SapLut::And Boolean AND: data[index] = data[index] & value
 SapLut::Or Boolean OR: data[index] = data[index] | value
 SapLut::Xor Boolean XOR: data[index] = data[index] ^ value
value Source value object
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Modifies all LUT entries using a Boolean operation. The value must be either a SapDataMono or SapDataRGB
object, depending on the LUT format.
Demo/Example Usage
GigE Camera LUT Example, Grab LUT Example

SapLut::Copy
BOOL Copy(SapLut* pSrc);
Parameters
pSrc LUT object to copy from
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Copies all source LUT object entries to the current object. The two LUTs must be exactly the same size, as
returned by the GetTotalSize method.
Demo/Example Usage
Not available

SapLut::Create
BOOL Create();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Creates all the low-level Sapera resources needed by the LUT object.
Demo/Example Usage
GigE Camera LUT Example, Grab LUT Example

SapLut::Destroy
BOOL Destroy();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Destroys all the low-level Sapera resources needed by the LUT object.
Demo/Example Usage
GigE Camera LUT Example, Grab LUT Example

SapLut::Gamma
BOOL Gamma(float factor);
Parameters

158 • Basic Class Reference Sapera LT ++ Programmer's Manual

factor Gamma correction factor to apply
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Modifies all LUT entries using inverse gamma correction with the specified factor. This is used to correct the
light response of the camera, which is often a power function (referred to as the gamma function). A factor of
1 means no correction is applied, and a normal LUT is computed instead.
Demo/Example Usage
GigE Camera LUT Example, Grab LUT Example

SapLut::GetElementSize
int GetElementSize();
Remarks
Gets the number of bytes required to store a single LUT element.
The initial value for this attribute is 1. It is then set to the LUT element size value when calling the Create
method.
Demo/Example Usage
Not available

SapLut::GetFormat, SapLut::SetFormat
SapFormat GetFormat();
void SetFormat(SapFormat format);
Remarks
Gets/sets the LUT format. The initial value for this attribute is SapFormatMono8, unless a specific value was
specified in the constructor.
You can only call SetFormat before the Create method. See the SapLut::SapLut constructor for possible values
for format.
Demo/Example Usage
Not available

SapLut::GetHandle
CORHANDLE GetHandle();
Remarks
Gets the low-level Sapera handle of the LUT resource that you may then use from the low-level Sapera
functionality. The handle is only valid after you call the Create method.
See the Sapera LT Basic Modules Reference Manual for details on low-level Sapera functionality.
Demo/Example Usage
Not available

SapLut::GetLocation, SapLut::SetLocation
SapLocation GetLocation();
BOOL SetLocation(SapLocation location);
Remarks
Gets/sets the location where the LUT resource is located. This usually corresponds to the system server. A
specific server can also be specified through the SapLut constructor.
Demo/Example Usage
Not available

SapLut::GetNumEntries, SapLut::SetNumEntries
int GetNumEntries();
BOOL SetNumEntries (int numEntries);
Remarks

Sapera LT ++ Programmer's Manual Basic Class Reference • 159

Gets/sets the number of LUT entries. The initial value for this attribute is 256, unless a specific value was
specified in the constructor.
You can only call SetNumEntries before the Create method.
Demo/Example Usage
Not available

SapLut::GetNumPages
int GetNumPages();
Remarks
Gets the number of color planes in the LUT. The initial value for this attribute is 1. It is then set to the LUT
number of pages value when calling the Create method.
This value is usually 1 if the LUT format is monochrome and 3 if it is color.
Demo/Example Usage
Not available

SapLut::GetParameter, SapLut::SetParameter
BOOL GetParameter(int param, void* pValue);
BOOL SetParameter(int param, int value);
BOOL SetParameter(int param, void* pValue);
Parameters
param Low-level Sapera C library parameter to read or write
pValue Pointer to parameter value to read back or to write
value New parameter value to write
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
These methods allow direct read/write access to low-level Sapera C library parameters for the LUT module.
The GetParameter method needs a pointer to a memory area large enough to receive the parameter value,
which is usually a 32-bit integer. The first form of SetParameter accepts a 32-bit value for the new value. The
second form takes a pointer to the new value and is required when the parameter uses more than 32-bits of
storage.
Note that you will rarely need to use these methods. You should first make certain that what you need is not
already supported through the SapLut Class. Also, directly setting parameter values may interfere with the
correct operation of the class.
See the Sapera LT Basic Modules Reference Manual for a description of all parameters and their possible
values.
Demo/Example Usage
Not available

SapLut::GetTotalSize
int GetTotalSize();
Remarks
Gets the number total of bytes required to store the LUT data.
The initial value for this attribute is 256. It is then set to the LUT size value when calling the Create method.
Demo/Example Usage
Not available

SapLut::IsSigned
BOOL IsSigned();
Remarks
Checks if the LUT contains signed or unsigned data.
The initial value for this attribute is FALSE. It is then set to the LUT signed value when calling the Create

160 • Basic Class Reference Sapera LT ++ Programmer's Manual

method.
Demo/Example Usage
Not available

SapLut::Load
BOOL Load(const char* filename);
Parameters
filename Name of source file
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Loads LUT entries from a file. The number of entries and formats of the LUT are updated to reflect the file
contents. After calling Load, use the GetNumEntries and GetFormat methods to get their updated values.
Demo/Example Usage
GigE Camera LUT Example, Grab LUT Example

SapLut::Normal
BOOL Normal();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Modifies all LUT entries using a linear mapping with a positive slope, as follows:
 data[0] = minValue

(Linear mapping from data[0] to data[maxIndex])
data[maxIndex] = maxValue

Demo/Example Usage
GigE Camera LUT Example, Grab LUT Example

SapLut::Read
BOOL Read(int lutIndex, SapData* pValue);
BOOL Read(int offset, void* pData, int size);
Parameters
lutIndex Index of LUT element to read, starting at 0
pValue Pointer to a destination value object
offset Byte offset to start reading from in the LUT.
pData Destination memory area for LUT data
size Number of bytes to read
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Use the first form of Read to read a single LUT element to either a SapDataMono or SapDataRGB object. You
do not have to know the exact LUT data format and how it is stored in memory.
Use the second form of Read if you want to read raw LUT data directly to a memory area allocated in the
application program. In this case, you also need to use the GetFormat, GetElementSize, and GetNumPages
methods to find out the LUT data organization.
Demo/Example Usage
Not available

SapLut::Reverse
BOOL Reverse();
Return Value

Sapera LT ++ Programmer's Manual Basic Class Reference • 161

Returns TRUE if successful, FALSE otherwise
Remarks
Modifies all LUT entries using a linear mapping with a negative slope, as follows:
 data[0] = maxValue

(Linear mapping from data[0] to data[maxIndex])
data[maxIndex] = minValue

Demo/Example Usage
GigE Camera LUT Example, Grab LUT Example

SapLut::Roll
BOOL Roll(int numEntries);
Parameters
numEntries Specifies by how many entries LUT data should be shifted
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Relocates LUT entries upwards or downwards as one block. The actual data elements are not modified, and
their position relative to one another remains the same. If numEntries is positive, then a downward shift
occurs. If it is negative, an upward shift occurs. This behavior is expressed as follows:
 If numEntries > 0: data[(index + numEntries) % maxIndex] = data[index]

If numEntries < 0: data[index] = data[(index - numEntries) % maxIndex]
Demo/Example Usage
GigE Camera LUT Example, Grab LUT Example

SapLut::Save
BOOL Save(const char* filename);
Parameters
filename Name of destination file
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Saves LUT entries to a file.
Demo/Example Usage
GigE Camera LUT Example, Grab LUT Example

SapLut::Shift
BOOL Shift(int numBits);
Parameters
numBits Specifies by how many bits LUT entries should be shifted
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Modifies all LUT entries using a logical shift. If numBits is positive, a left shift occurs, and the least significant
bits are filled with 0’s. If numBits is negative, a right shift occurs, and the most significant bits are filled with
0’s. This behavior is expressed as follows:
 If numBits > 0: data[index] <<= numBits

If numBits < 0: data[index] >>= (-numBits)
Demo/Example Usage
GigE Camera LUT Example, Grab LUT Example

SapLut::Slope

162 • Basic Class Reference Sapera LT ++ Programmer's Manual

BOOL Slope(int startIndex, int endIndex, SapData minValue, SapData maxValue,
BOOL clipOutside = FALSE);
Parameters
startIndex Starting LUT index for linear mapping
endIndex Ending LUT index for linear mapping
minValue LUT element value at starting index
maxValue LUT element value at ending index
clipOutside Specifies whether LUT elements outside the mapping range should also be modified
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Modifies part of a LUT with a linear mapping. LUT elements from startIndex to endIndex are remapped from
minValue to maxValue. If clipOutside is FALSE, then elements outside the range are unaffected. If TRUE, then
elements below startIndex are set to minValue and elements above endIndex are set to maxValue. This
behavior is expressed as follows:
 If clipOutside is TRUE: data[0] ... data[startIndex - 1] = minValue

data[startIndex] = minValue
(Linear mapping from data[startIndex] to data[endIndex])
data[endIndex] = maxValue
If clipOutside is TRUE: data[endIndex + 1] ... data[maxIndex- 1] = maxValue

The value arguments must be either SapDataMono or SapDataRGB objects, depending on the LUT format.
Demo/Example Usage
GigE Camera LUT Example, Grab LUT Example

SapLut::Threshold
BOOL Threshold(SapData threshValue);
BOOL Threshold(SapData lowValue, SapData highValue);
Parameters
threshValue Reference value for single threshold
lowValue Lower reference value for double threshold
highValue Upper reference value for double threshold
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Modifies all LUT elements using a threshold operation.
The first form of Threshold implements single threshold. Elements with a value lower than threshValue are set
to the lowest possible value. Elements with a value higher than or equal to threshValue are set to the highest
possible value. This behavior is expressed as follows:
 data[index] = (index >= threshValue) ? maxValue : minValue
The second form implements double threshold. Elements with a value higher than or equal to lowValue, but
lower than highValue, are set to the highest possible value. Elements outside that range are set to the lowest
possible value. This behavior is expressed as follows:
 data[index] = (index >= lowValue && index < highValue) ? maxValue : minValue
The value arguments must be either SapDataMono or SapDataRGB objects, depending on the LUT format.
Demo/Example Usage
GigE Camera LUT Example, Grab LUT Example

SapLut::Write
BOOL Write(int lutIndex, SapData value);
BOOL Write (int offset, void* pData, int size);
Parameters
lutIndex Index of LUT element to write, starting at 0

Sapera LT ++ Programmer's Manual Basic Class Reference • 163

value Source value object
offset Byte offset to start writing to in the LUT.
pData Source memory area for LUT data
size Number of bytes to write
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Use the first form of Write to write a single LUT element from either a SapDataMono or SapDataRGB object.
You do not have to know how the LUT is stored in memory.
Use the second form of Write if you want to write raw LUT data directly from a memory area allocated in the
application program. In this case, you also need to use the GetFormat, GetElementSize, and GetNumPages
methods to find out the LUT data organization.
Demo/Example Usage
Not available

164 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapManager

The SapManager Class includes methods for describing the Sapera resources present on the system. It also includes
error management capabilities.

You will never need to explicitly create a SapManager object. First, almost all methods are declared as static, which
means you may use them at any time. Second, most Sapera LT ++ classes are derived from SapManager, so they
inherit its methods and protected data members.

#include <SapClassBasic.h>

SapManager Class Members

Attributes
operator BOOL Checks whether the Create method has succeeded for a derived object
GetDisplayStatusMode, Gets/sets the global reporting mode for messages and errors
SetDisplayStatusMode
GetCommandTimeout, Gets/sets the timeout value used when waiting for completion of Sapera LT

commands SetCommandTimeout
GetResetTimeout, Gets/sets the timeout value used when resetting a hardware device
SetResetTimeout
GetPixelDepthMin, Gets the minimum and maximum number of significant bits for a given data

format GetPixelDepthMax
GetServerEventType Gets the currently registered event type for server related events
Operations
Open Initializes access to the Sapera LT libraries
Close Terminates access to the Sapera LT libraries

Sapera LT ++ Programmer's Manual Basic Class Reference • 165

DetectAllServers Detects cameras (all types or GenCP only) after a Sapera application has been
started

GetVersionInfo Gets Sapera LT version and licensing information
GetServerCount Gets the number of available Sapera servers
GetServerIndex Gets the index of a Sapera server
GetServerName Gets the name of a Sapera server
GetServerType Gets the type of a Sapera server
IsServerAccessible Checks if the resources for a server are accessible
GetServerHandle Returns the low-level Sapera handle of a server resource
GetServerSerialNumber Gets the serial number corresponding to a Sapera server
GetResourceCount Gets the number of Sapera resources of a specific type on a server
GetResourceIndex Gets the index of a Sapera resource
GetResourceName Gets the name of a Sapera resource
IsResourceAvailable Checks whether a resource is available for use
IsSystemLocation Check whether a SapLocation object is located on the system server
IsSameServer Checks whether two SapLocation objects are located on the same server
IsSameLocation Checks whether two SapLocation objects are the same
GetFormatType Gets the data type corresponding to a Sapera data format
GetStringFromFormat Gets a text description of a Sapera data format
IsStatusOk Checks the return value of a Sapera low-level C Library function call, and reports

an error if appropriate
GetLastStatus Gets a description of the latest Sapera low-level C library error
DisplayMessage Reports a custom message using the current reporting mode
ResetServer Resets the hardware device associated with a specific server
GetInstallDirectory Gets the directory where a Sapera product is installed
RegisterServerCallback Registers a callback function for server related events
UnregisterServerCallback Unregister the callback function for server related events
WriteFile Writes a file to non-volatile memory on the device

SapManager Member Functions
The following are members of the SapManager Class.

SapManager::operator BOOL

operator BOOL();
Remarks
Checks whether the Create method has succeeded for an object derived from SapManager. This allows the
variable representing the object to be used in a Boolean expression.
Calling the Destroy method resets this attribute to FALSE.
Demo/Example Usage
All demos and examples

SapManager::Close
static BOOL Close();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Terminates access to the Sapera LT libraries. See the SapManager::Open method for more details.
Demo/Example Usage

166 • Basic Class Reference Sapera LT ++ Programmer's Manual

Find Camera Example

SapManager::DetectAllServers
static BOOL DetectAllServers(DetectServerType type = DetectServerAll);
Parameters
type Specifies the type of server to detect. Possible values are:
 DetectServerType::DetectServerGenCP Detect GenCP servers only.
 DetectServerType::DetectServerAll Detect all server types.
Remarks
Use this function to detect GenCP cameras, or any other type of acquisition device (i.e, server), after a Sapera
application has been started. In a typical application device detection (discovery) is initiated during application
startup. If a camera is connected after an application has been launched, the device may not be detected. Use
this function to trigger the device discovery process.
Note, you must register the following events to enable this method’s functionality:

• EventServerConnected
• EventServerDisconnected

See SapManager::RegisterServerCallback.
Demo/Example Usage
Find Camera example

SapManager::DisplayMessage
static void DisplayMessage(const char* message, const char* fileName = NULL, int lineNumber = 0, ...);
Parameters
message Custom message to report
fileName Name of source file from which DisplayMessage is called
lineNumber Line number from which DisplayMessage is called
… Variable arguments if message includes printf-style format specifications
Remarks
Reports a custom message using the current reporting mode. File and line information is automatically
appended to message, unless you set fileName to NULL.
See the SetDisplayStatusMode method for a description of the available reporting modes.
Demo/Example Usage
Not available

SapManager::GetCommandTimeout, SapManager::SetCommandTimeout
static int GetCommandTimeout();
static void SetCommandTimeout (int commandTimeout);
Remarks
Gets/sets the timeout value (in milliseconds) used when waiting for completion of Sapera LT commands. The
initial value for this attribute is 20000 (20 seconds).
If you need to control the timeout value used by the ResetServer method, use the GetResetTimeout and
SetResetTimeout methods instead.
Demo/Example Usage
GigE Sequential Grab Demo, Sequential Grab Demo, Camera Files Example

SapManager::GetDisplayStatusMode, SapManager::SetDisplayStatusMode
static SapManager::StatusMode GetDisplayStatusMode();
static BOOL SetDisplayStatusMode(SapManager::StatusMode mode, SapManCallback pCallback = NULL,
void* pContext = NULL);
Parameters
mode New reporting mode. The following values are available:

Sapera LT ++ Programmer's Manual Basic Class Reference • 167

 SapManager::StatusNotify Sends messages to a popup window
 SapManager::StatusLog Sends messages to the Sapera Log Server (can be displayed

using the Sapera Log Viewer)
 SapManager::StatusDebug Sends messages to the active debugger, if any
 SapManager::StatusCustom Error information is not reported, it is just stored internally
 SapManager::StatusCallback Notifies application code through a callback function
pCallback Application callback function to be called when reporting a message.

This function must be declared as:
void MyCallback(SapManCallbackInfo* pInfo);

pContext Optional pointer to an application context to be passed to the callback function. If pCallback is
NULL, this parameter is ignored.

Remarks
Gets/sets the global reporting mode for messages and errors. This mode is used by the IsStatusOk and
DisplayMessage methods, and also internally by the Sapera LT ++ library.
The initial value for this attribute is StatusNotify.
For StatusCallback reporting mode, you can call one of the following SapManCallbackInfo methods from the
application callback function to retrieve the relevant information: GetErrorValue, GetErrorMessage, and
GetContext.
For StatusCustom reporting mode, the only way to retrieve messages is by calling the GetLastStatus method.
Note that, for all reporting modes, any Sapera LT ++ method returns FALSE to indicate an error.
Demo/Example Usage
Camera Features Example, Find Camera Example

SapManager::GetFormatType
static SapFormatType GetFormatType(SapFormat format);
Parameters
format Sapera data format
Remarks
Gets the data type corresponding to the specified Sapera data format as one of the following values:
 SapFormatTypeUnknown Unable to determine data type
 SapFormatTypeMono Monochrome
 SapFormatTypeRGB RGB color
 SapFormatTypeYUV YUV color
 SapFormatTypeHSI HSI color
 SapFormatTypeHSV HSV color
 SapFormatTypeColor Lookup table color data
 SapFormatTypeRGBA RGB color with an additional component (alpha channel, infrared

component, etc.)
Demo/Example Usage
Not available

SapManager::GetInstallDirectory
static BOOL GetInstallDirectory(int serverIndex, char* installDir);
static BOOL GetInstallDirectory (const char* serverName, char* installDir);
static BOOL GetInstallDirectory (SapLocation loc, char* installDir);
Parameters
serverIndex Sapera server index
installDir Memory area large enough to receive the installation directory (at least 257 bytes)
serverName Sapera server name
loc Valid SapLocation object

168 • Basic Class Reference Sapera LT ++ Programmer's Manual

Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the directory where a Sapera product is installed.
For the system server, this corresponds to the Sapera installation directory, for example, c:\ Program
Files\Teledyne DALSA\Sapera.
For a server corresponding to a hardware device, this corresponds to the directory where the driver for the
device is installed, .for example, c: \Program Files\Teledyne DALSA\X64 Xcelera-CL PX4.
Demo/Example Usage
Not available

SapManager::GetLastStatus
static const char* GetLastStatus();
static void GetLastStatus(SAPSTATUS* pLastStatus);
Parameters
pLastStatus Pointer to the most recent Sapera low-level status code to retrieve
Remarks
Gets a description of the latest Sapera LT ++ and/or low-level C library error.
The first form of GetLastStatus returns the latest text description, similar to what is generated by the
IsStatusOk method. If the actual error occurred inside a call to the low-level C library, then you may also use
the second form to retrieve the actual error code.
Note that each thread in a Sapera LT application has its own latest error code and description. This means that
you cannot call GetLastStatus to retrieve error information for a Sapera LT ++ function which has been called
in another thread.
See the SetDisplayStatusMode method for a description of the available reporting modes.
See the Sapera LT Basic Modules Reference Manual for details on low-level Sapera functionality.
Demo/Example Usage
Not available

SapManager::GetPixelDepthMin, SapManager::GetPixelDepthMax
static int GetPixelDepthMin(SapFormat format);
static int GetPixelDepthMax(SapFormat format);
Remarks
Gets the minimum and maximum number of significant bits for a given buffer format. This corresponds to the
minimum and maximum pixel depth values for a corresponding SapBuffer object.
See the SapBuffer constructor for a list of possible values for format.
Demo/Example Usage
Dual Acquisition Demo, Grab LUT Example

SapManager.GetPixelDepthMin, SapManager.GetPixelDepthMax Method

SapManager::GetResetTimeout, SapManager::SetResetTimeout
static int GetResetTimeout();
static void SetResetTimeout (int timeOut);
Remarks
Gets/sets the timeout value (in milliseconds) used when resetting a hardware device. This value is used by the
ResetServer method.
If you need to get/set the timeout value used when waiting for completion of Sapera LT commands, use the
GetCommandTimeout and SetCommandTimeout methods instead.
The initial value for this attribute is 20000 (20 seconds).
Demo/Example Usage
Not available

Sapera LT ++ Programmer's Manual Basic Class Reference • 169

SapManager::GetResourceCount
static int GetResourceCount(int serverIndex, SapManager::ResType resourceType);
static int GetResourceCount(const char* serverName, SapManager::ResType resourceType);
static int GetResourceCount(SapLocation loc, SapManager::ResType resourceType);
Parameters
serverIndex Sapera server index
resourceType Resource type to inquire. See the SapManager::GetServerCount method for the list of

possible values.
serverName Sapera server name
loc Valid SapLocation object
Remarks
Gets the number of resources of a specified type on a Sapera server. This only applies to static resources, that
is, those attached to physical devices. Dynamic resources, like buffers, do not have a fixed count.
The first form of this method uses a server index between 0 and the value returned by the GetServerCount
method, minus 1. The second form uses a server name. The third form uses an existing SapLocation object
with valid server information.
Use the Sapera Configuration utility to find the names of all Sapera servers in your system.
See also the ‘Servers and Resources’ section in the user’s manual for each Sapera hardware product for a list
of all valid server names for that product.
Demo/Example Usage
IO Demo, Find Camera Example, GigE Auto-White Balance Example, GigE Camera LUT Example, Grab Console
Example, Grab LUT Example

SapManager::GetResourceIndex
static int GetResourceIndex(int serverIndex, SapManager::ResType resourceType, const char*
resourceName);
static int GetResourceIndex(const char *serverName, SapManager::ResType resourceType,
const char* resourceName);
Parameters
serverIndex Sapera server index
resourceType Resource type to inquire. See the GetServerCount method for the list of possible values.
resourceName Sapera resource name
serverName Sapera server name
Remarks
Gets the index of a Sapera resource. Returns SapLocation::ResourceUnknown if the specified resource cannot
be found.
The first form of GetResourceIndex looks for the resource of the specified name and type on the server
specified by index. The second form uses the server name instead of the index.
Use the Sapera Configuration utility to find the names of all Sapera servers in your system
See also the ‘Servers and Resources’ section in the user’s manual for each Sapera hardware product for a list
of all valid server and resource names for that product.
Demo/Example Usage
Not available

SapManager::GetResourceName
static BOOL GetResourceName(int serverIndex, SapManager::ResType resourceType, int resourceIndex,
char* resourceName);
static BOOL GetResourceName(const char *serverName, SapManager::ResType resourceType,
int resourceIndex, char* resourceName, int nameSize = MaxLabelSize);
static BOOL GetResourceName(SapLocation loc, SapManager::ResType resourceType, char* resourceName);
Parameters
serverIndex Index of Sapera server containing the resource.
resourceType Resource type to inquire. See the GetServerCount method for the list of possible values.

170 • Basic Class Reference Sapera LT ++ Programmer's Manual

resourceIndex Index of requested resource of the specified type.
resourceName Memory area large enough to receive the resource name (at least 128 bytes).
serverName Name of Sapera server containing the resource.
loc Valid SapLocation object.
nameSize Size of memory allocated by resourceName, in bytes.
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the name of a Sapera resource of a specified type.
The first form of this method uses server and resource indices. Specify a server index between 0 and the value
returned by the GetServerCount method, minus 1. Specify a resource index between 0 and the value returned
by the GetResourceCount method, minus 1. The second form uses a server name and resource index. The
third form uses an existing SapLocation object with valid server and resource information.
Use the Sapera Configuration utility to find the names of all Sapera servers in your system.
See also the ‘Servers and Resources’ section in the user’s manual for each Sapera hardware product for a list
of all valid server names and resource indices for that product.
Demo/Example Usage
Not available

SapManager::GetServerCount
static int GetServerCount();
static int GetServerCount(SapManager::ResType resourceType);
Parameters
resourceType Resource type to inquire, can be one of the following:
 SapManager::ResourceAcq Frame grabber acquisition hardware
 SapManager::ResourceAcqDevice Camera acquisition hardware (for example, Genie)
 SapManager::ResourceCounter Event counters
 SapManager::ResourceDisplay Physical displays
 SapManager::ResourceDsp Digital Signal Processors
 SapManager::ResourceGio General inputs and outputs
 SapManager::ResourceGraphic Graphics engine
 SapManager::ResourceRtPro Realtime Processor hardware
Remarks
Gets the number of available Sapera servers.
The first form of this method considers all servers, regardless of their resource type. In this case, the return
value is at least 1, since the system server is always present. The second form returns the number of servers
for the specified resource type only, so the return value may be equal to 0.
Note that the following resource types apply only to older products: ResourceCab,
ResourceCounterResourceDsp, and ResourcePixPro. See the Sapera LT ++ Legacy Classes Reference Manual
for related classes.
Demo/Example Usage
IO Demo, Find Camera Example

SapManager::GetServerEventType
static SapManager::EventType GetServerEventType();
Remarks
Gets the currently registered event type for server related events. See the RegisterServerCallback method for
the list of possible values.
If this method returns the special value SapManager::EventNone, this means that no server related events are
currently registered. This is the default value, which is also reset when calling the UnregisterServerCallback
method.

Sapera LT ++ Programmer's Manual Basic Class Reference • 171

Demo/Example Usage
Not available

SapManager::GetServerHandle
static BOOL GetServerHandle(int serverIndex, PCORSERVER pServer);
static BOOL GetServerHandle(const char* serverName, PCORSERVER pServer);
static BOOL GetServerHandle(SapLocation loc, PCORSERVER pServer);
Parameters
serverIndex Sapera server index
serverName Sapera server name
loc Valid SapLocation object
pServer Pointer to returned low-level Sapera server handle
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the low-level handle of a Sapera server.
The first form of this method uses a server index between 0 and the value returned by the GetServerCount
method, minus 1. The second form uses a server name. The third form uses an existing SapLocation object
with valid server information.
Use the Sapera Configuration utility to find the names of all Sapera servers in your system.
See also the ‘Servers and Resources’ section in the user’s manual for each Sapera hardware product for a list
of all valid server names for that product.
See the Sapera LT Basic Modules Reference Manual for details on low-level Sapera functionality.
Demo/Example Usage
Not available

SapManager::GetServerIndex
static int GetServerIndex(const char* serverName);
static int GetServerIndex(SapLocation loc);
Parameters
serverName Sapera server name
loc Valid SapLocation object
Remarks
Gets the index of a Sapera server. Returns SapLocation::ServerUnknown if the specified server cannot be
found.
The first form of this method uses the server name. The second form uses an existing SapLocation object with
valid server information.
Use the Sapera Configuration utility to find the names of all Sapera servers in your system.
See also the ‘Servers and Resources’ section in the user’s manual for each Sapera hardware product for a list
of all valid server names for that product.
Demo/Example Usage
IO Demo, GigE Auto-White Balance Example, GigE Camera LUT Example, Grab Console Example, Grab LUT
Example

SapManager::GetServerName
static BOOL GetServerName(int serverIndex, char* serverName);
static BOOL GetServerName(SapLocation loc, char* serverName);
static BOOL GetServerName(int serverIndex, SapManager::ResType resourceType, char* serverName);
Parameters
serverIndex Sapera server index
serverName Memory area large enough to receive the server name (at least 32 bytes)
loc Valid SapLocation object

172 • Basic Class Reference Sapera LT ++ Programmer's Manual

resourceType Resource type to inquire. See the GetServerCountmethod for the list of possible values.
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the name of a Sapera server.
The first form of this method uses a server index between 0 and the value returned by the GetServerCount
method, minus 1. The second form uses an existing SapLocation object with valid server information. The third
form only considers servers with at least one resource of the specified type. For example, index 1 corresponds
to the second server with at least one acquisition device.
Use the Sapera Configuration utility to find the names of all Sapera servers in your system.
See also the ‘Servers and Resources’ section in the user’s manual for each Sapera hardware product for a list
of all valid server names for that product.
Demo/Example Usage
Dual Acquisition Demo, IO Demo, Find Camera Example

SapManager::GetServerSerialNumber
static BOOL GetServerSerialNumber(int serverIndex, char* serialNumber);
static BOOL GetServerSerialNumber(const char* serverName, char* serialNumber);
static BOOL GetServerSerialNumber(SapLocation loc, char* serialNumber);
Parameters
serverIndex Sapera server index
serialNumber Memory area large enough to receive the text for the serial number (at least 16 bytes)
serverName Sapera server name
loc Valid SapLocation object
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets a text representation of the serial number corresponding to the hardware device for the specified Sapera
server. It consists of either the letter ‘S’ or ‘H’ followed by seven digits, for example, “S1234567”.
Note that there is no serial number associated with the System server. Also, this function is only supported for
frame grabbers and older Genie cameras (not Genie-TS). When using other camera servers (GigE-Vision or
GenCP), you need a valid SapAcqDevice object from which the serial number can be retrieved through a
named feature.
Demo/Example Usage
Not available

SapManager::GetServerType
static SapManager::ServerType GetServerType(int serverIndex);
static SapManager::ServerType GetServerType(const char* serverName);
static SapManager::ServerType GetServerType(SapLocation loc);
Parameters
serverIndex Sapera server index
serverName Sapera server name
loc Valid SapLocation object
Return Value Can be one of the following:
 SapManager::ServerNone Server type cannot be determined
 SapManager::ServerSystem System server
 SapManager::ServerBandit3CV Bandit-3 CV Express VGA frame grabber
 SapManager::ServerX64CL X64-CL acquisition board
 SapManager::ServerX64CLiPRO X64-CL iPro acquisition board
 SapManager::ServerX64CLExpress X64-CL-Express acquisition board
 SapManager::ServerX64CLLX4 X64 Xcelera-CL LX4 acquisition board

Sapera LT ++ Programmer's Manual Basic Class Reference • 173

 SapManager::ServerX64CLPX4 X64 Xcelera-CL PX4 acquisition board
 SapManager::ServerX64LVDS X64-LVDS acquisition board
 SapManager::ServerX64LVDSPX4 X64-LVDSPX4 acquisition board
 SapManager::ServerX64LVDSVX4 X64-LVDSVX4 acquisition board
 SapManager::ServerX64ANQuad X64-AN Quad acquisition board
 SapManager::ServerX64ANLX1 X64-ANLX1 acquisition board
 SapManager::ServerPC2Vision PC2-Vision acquisition board
 SapManager::ServerPC2Comp PC2-Comp Express acquisition board
 SapManager::ServerPC2CamLink PC2-CamLink acquisition board
 SapManager::ServerGenie Genie camera
 SapManager::ServerAnacondaCL Anaconda-CL vision processor
 SapManager::ServerAnacondaLVDS Anaconda-LVDS vision processor
Remarks
Gets the type of a Sapera server.
The first form of this method uses a server index between 0 and the value returned by the GetServerCount
method, minus 1. The second form uses a server name. The third form uses an existing SapLocation object
with valid server information.
Use the Sapera Configuration utility to find the names of all Sapera servers in your system.
See also the ‘Servers and Resources’ section in the user’s manual for each Sapera hardware product for a list
of all valid server names for that product.
Demo/Example Usage
Not available

SapManager::GetStringFromFormat
static BOOL GetStringFromFormat(SapFormat format, char* txtFormat);
Parameters
format Sapera data format
txtFormat Memory area large enough to receive the description (at least 16 bytes)
Return Value
Returns TRUE if the low-level function call succeeded, FALSE otherwise
Remarks
Gets a text description of the specified Sapera data format, for example, ‘MONO8’ for SapFormatMono8.
Demo/Example Usage
Not available

SapManager::GetVersionInfo
BOOL GetVersionInfo(SapManVersionInfo* pVersionInfo);
Parameters
pVersionInfo Pointer to a SapManVersionInfo object
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets Sapera LT version and licensing information. When the method call returns, the SapManVersionInfo
object pointed to by pVersionInfo contains the information. It has the following attributes:
 int GetMajor() Gets the major version number. For example, if the version number

is 6.30.01.0806, this method returns 6.
 int GetMinor() Gets the minor version number. For example, if the version number is

6.30.01.0806, this method returns 30.
 int GetRevision() Gets the revision number. For example, if the version number is

6.30.01.0806, this method returns 1.

174 • Basic Class Reference Sapera LT ++ Programmer's Manual

 int GetBuild() Gets the build number. For example, if the version number is
6.30.01.0806, this method returns 806.

 SapManVersionInfo::
LicenseType
GetLicenseType()

Gets the Sapera LT license type for the current installation, which can
be one of SapManVersionInfo::Runtime,
SapManVersionInfo::Evaluation, or SapManVersionInfo::FullSDK

 int
GetEvalDaysRemaining()

Gets the number of days remaining in the evaluation period when the
license type is Runtime, where a value equal to 0 means that the
evaluation period has expired.

Demo/Example Usage
Not available

SapManager::IsResourceAvailable
static BOOL IsResourceAvailable(int serverIndex, SapManager::ResType resourceType, int resourceIndex);
static BOOL IsResourceAvailable(const char* serverName, SapManager::ResType resourceType,
int resourceIndex);
static BOOL IsResourceAvailable (SapLocation loc, SapManager::ResType resourceType);
Parameters
serverIndex Index of Sapera server containing the resource
resourceType Resource type to inquire. See the GetServerCount method for the list of possible values.
resourceIndex Index of requested resource of the specified type
serverName Name of Sapera server containing the resource
loc Valid SapLocation object
Return Value
Returns TRUE if the specified resource is not already used, FALSE otherwise
Remarks
Determines if a specific Sapera resource on a server is available. You may use this method, for example,
before calling SapAcquisition::Create to avoid getting an error when the acquisition resource is already in use.
The first form of this method uses server and resource indices. Specify a server index between 0 and the value
returned by the GetServerCount method, minus 1. Specify a resource index between 0 and the value returned
by the GetResourceCount method, minus 1. The second form uses a server name and resource index. The
third form uses an existing SapLocation object with valid server and resource information.
Use the Sapera Configuration utility to find the names of all Sapera servers in your system.
See also the ‘Servers and Resources’ section in the user’s manual for each Sapera hardware product for a list
of all valid server names and resource indices for that product.
Demo/Example Usage
Not available

SapManager::IsSameLocation Method
static BOOL IsSameLocation(SapLocation loc1, SapLocation loc2);
Parameters
loc1 First valid SapLocation object
loc2 Second valid SapLocation object
Remarks
Checks if the two specified SapLocation objects have the same server and resource information.
Demo/Example Usage
Not available

SapManager::IsSameServer
static BOOL IsSameServer(SapLocation loc1, SapLocation loc2);
Parameters
loc1 First valid SapLocation object
loc2 Second valid SapLocation object

Sapera LT ++ Programmer's Manual Basic Class Reference • 175

Remarks
Checks if the two specified SapLocation objects have the same server information.
Demo/Example Usage
IsSameServer

SapManager::IsServerAccessible
static BOOL IsServerAccessible(int serverIndex);
static BOOL IsServerAccessible(const char* serverName);
static BOOL IsServerAccessible(SapLocation loc);
Parameters
serverIndex Index of Sapera server containing the resource
serverName Name of Sapera server containing the resource
Loc Valid SapLocation object
Return Value
Returns TRUE if the resources for the server are accessible, FALSE otherwise.
Remarks
Checks if the resources belonging to a server are currently accessible. Although existing objects for these
resources are still valid when their server becomes unaccessible, they must be left alone or destroyed (for
example, SapAcqDevice::Destroy).
When a Sapera application starts, all detected servers are automatically accessible. However, Sapera camera
devices (GigE-Vision and GenCP) can be connected and disconnected while a Sapera application is running.
When such a device is connected for the first time, its server is automatically accessible. When the device is
later disconnected, the server becomes unaccessible. If it is reconnected again, the server is once again
accessible.
The first form of this method uses a server index. Specify a server index between 0 and the value returned by
the GetServerCount method, minus 1. The second form uses a server name. The third form uses an existing
SapLocation object.
Accessibility of servers can also be determined by registering callbacks for server related events using the
RegisterServerCallback method.
Note that you should not use this method for devices which are always connected (for example, frame
grabbers), since the return value may not correspond to the actual resource accessibility for the corresponding
server.
Demo/Example Usage
Not available

SapManager::IsSystemLocation
static BOOL IsSystemLocation();
static BOOL IsSystemLocation(SapLocation loc);
Parameters
loc Valid SapLocation object
Remarks
Check if the current application is running on the system server, or if the SapLocation object refers to this
server.
Demo/Example Usage
Not available

SapManager::IsStatusOk
static BOOL IsStatusOk(const char* functionName, SAPSTATUS status);
Parameters
functionName Name of a low-level Sapera function
status Low-level status code returned by the function
Return Value

176 • Basic Class Reference Sapera LT ++ Programmer's Manual

Returns TRUE if the low-level function call succeeded, FALSE otherwise
Remarks
Checks the return value of a Sapera low-level C library function call and reports an error if appropriate, using
the current reporting mode. See the SetDisplayStatusMode method for a description of the available modes.
See the Sapera LT Basic Modules Reference Manual for details on low-level Sapera functionality.
Demo/Example Usage
Not available

SapManager::Open
static BOOL Open();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Initiates access to the Sapera LT libraries.
For most applications you do not have to call this method, as the libraries are automatically loaded during the
first Sapera LT ++ constructor call in the application code, and automatically unloaded during the last Sapera
LT ++ destructor call. For example:
 // No Sapera LT ++ calls before this line

// This loads the libraries
SapBuffer *buf1 = new SapBuffer();
SapBuffer *buf2 = new SapBuffer();
delete buf1;
// This unloads the libraries
delete buf2;
// No Sapera LT ++ calls after this line

There is, however, at least one case for which the default behavior may not be acceptable. If the application
code frequently deletes all Sapera LT ++ objects and then reallocates them again, the libraries will be
unloaded and reloaded each time, causing a noticeable delay. In this case, you can call the Open method as
the first Sapera LT ++ call in the application, with a call to SapManager::Close as the last Sapera LT ++ call.
This results in the libraries being loaded and unloaded exactly once, as follows:
 // No Sapera LT ++ calls before this line

// This loads the libraries
SapManager::Open();
//
// Arbitrary Sapera LT ++ calls, none of which unloads or reloads the libraries
//
// This unloads the libraries
SapManager::Close();
// No Sapera LT ++ calls after this line

Demo/Example Usage
Find Camera Example

SapManager::RegisterServerCallback
static BOOL RegisterServerCallback(SapManager::EventType eventType, SapManCallback callback,
void* context = NULL);
Parameters
eventType Manager events for which the application callback function will be called. One or more of the

following values may be combined together using a bitwise OR operation:
 SapManager::EventServerNew A new device is connected while a Sapera

application is already running
 SapManager::EventServerDisconnected The device corresponding to an existing server

is disconnected. (Replaces
SapManager::EventServerNotAccessible which is
now deprecated.)

 SapManager::EventServerConnected The device corresponding to an existing,
unaccessible server is reconnected. (Replaces

Sapera LT ++ Programmer's Manual Basic Class Reference • 177

SapManager::EventServerNotAccessible, which
is now deprecated.)

 SapManager::EventServerDataBaseFull There is no room in the Sapera server database
for a new device that has just been connected

 SapManager::EventResourceInfoChanged The information describing a resource (typically
its label) has changed

 SapManager::EventServerFile The information about the progress of the file
being transferred

callback Application callback function to be called each time one of the events specified above is
received.
The callback function must be declared as:
void MyCallback(SapManCallbackInfo *pInfo);

context Optional pointer to an application context to be passed to the callback function.
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Registers a callback function for server related events. The callback function provides information on the
corresponding event (through the SapManCallbackInfo object). The context pointer is also returned by the
callback function allowing you to exchange user information between the callback and your application context.
In the callback function, you can obtain the event type that triggered the callback by calling the
SapManCallbackInfo::GetEventType method. For all events except EventServerDataBaseFull, you can obtain
the index of the server by calling SapManCallbackInfo::GetServerIndex. For the EventResourceInfoChanged
event, you can obtain the index of the affected resource by calling SapManCallbackInfo::GetResourceIndex.
The EventResourceInfoChanged event can only occur as a result of modifying the value of the ‘DeviceUserID’
feature through the SapAcqDevice class.
The EventServerFile event will occur only when a firmware file is being uploaded to a device like a frame-
grabber. You can obtain the progress of the upload by calling SapManCallbackInfo::GetFilePercentProgress.
Note that server related events are only available when dealing with Sapera camera devices (GigE-Vision and
GenCP), that can be connected and disconnected while a Sapera application is running.
Demo/Example Usage
Not available

SapManager::ResetServer
static BOOL ResetServer(int serverIndex, BOOL wait = TRUE, SapManCallback pCallback = NULL,
void* pContext = NULL);
static BOOL ResetServer(const char* serverName, BOOL wait = TRUE, SapManCallback pCallback = NULL,
void* pContext = NULL);
static BOOL ResetServer(SapLocation loc, BOOL wait = TRUE, SapManCallback pCallback = NULL,
void* pContext = NULL);
Parameters
serverIndex Sapera server index
serverName Sapera server name
loc Valid SapLocation object
wait Specifies whether this method should return immediately after resetting the specified server,

or if it should wait for the server to be operational again
pCallback Application callback function to be called when the server is operational again after a reset.

The callback function must be declared as:
void MyCallback(SapManCallbackInfo* pInfo);

pContext Optional pointer to an application context to be passed to the callback function. If pCallback
is NULL, this parameter is ignored.

Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Resets the hardware device associated with a specific server.

178 • Basic Class Reference Sapera LT ++ Programmer's Manual

The first form of this method uses a server index between 0 and the value returned by the GetServerCount
method, minus 1. The second form uses a server name. The third form uses an existing SapLocation object
with valid server information.
There are three ways to use this method:
 wait = TRUE

pCallback = don’t care
Returns only when the reset is complete, and the server is operational
again

 wait = FALSE
pCallback = NULL

Returns immediately after resetting the server. The application program is
then responsible for figuring out when the server is operational again.

 wait = FALSE
pCallback != NULL

Returns immediately after resetting the server, and notifies the
application using the callback function when the server is operational
again

You can call the GetServerIndex and GetContext methods of the SapManCallbackInfo class to retrieve the
required information from the application callback function.
Note that all other Sapera LT ++ objects must be destroyed before calling this method, otherwise application
behavior is undefined. To reset the server, use the following sequence:

• Call Destroy on all Sapera LT ++ objects (SapTransfer, SapBuffer, SapAcquisition, ...)
• Call ResetServer
• Call Create for all needed Sapera LT ++ objects

Use the Sapera Configuration utility to find the names of all Sapera servers in your system.
See also the ‘Servers and Resources’ section in the user’s manual for each Sapera hardware product for a list
of all valid server names for that product.
Demo/Example Usage
Not available

SapManager::UnregisterServerCallback
static BOOL UnregisterServerCallback(void);
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Unregisters the callback function for server related events.
Demo/Example Usage
Not available

SapManager::WriteFile
static BOOL WriteFile(int serverIndex, const char *localFilePath, int deviceFileIndex);
static BOOL WriteFile(const char* serverName, const char *localFilePath, int deviceFileIndex);
static BOOL WriteFile(SapLocation loc, const char *localFilePath, int deviceFileIndex);
Parameters
serverIndex Sapera server index
serverName Sapera server name
loc Valid SapLocation object
deviceFileName Name of the device file. See the acquisition device User’s Manual for the list of supported

files.
deviceFileIndex Index of the file. All indices in the range from 0 to the value returned by the GetFileCount

method, minus 1, are valid.
localFilePath Full directory path and filename on the host computer to save the file.
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Writes a file to non-volatile memory on the device. Refer to the acquisition device’s User’s Manual for the list
of supported files.
Demo/Example Usage
Camera Files Example

Sapera LT ++ Programmer's Manual Basic Class Reference • 179

SapManCallbackInfo
The SapManCallbackInfo Class acts as a container for storing all arguments to the callback function for the
SapManager class.

 #include <SapClassBasic.h>

SapManCallbackInfo Class Members
Construction
SapManCallbackInfo Class constructor
Attributes
GetEventType Gets the manager events that triggered the call to the application callback
GetServerIndex Gets the Sapera server index associated with the call to the application callback
GetResourceIndex Gets the Sapera resource index associated with the call to the application callback
GetContext Gets the application context associated with the callback
GetErrorValue Gets the low-level Sapera C library error code associated with the callback
GetErrorMessage Gets the error message associated with the callback
GetFilePercentProgress Gets the file transfer progress when writing a file to a device.

SapManCallbackInfo Member Functions
The following are members of the SapManCallbackInfo Class.

SapManCallbackInfo::SapManCallbackInfo
SapManCallbackInfo(
 int serverIndex,
 void* context);
SapManCallbackInfo(
 SapManager::EventType eventType,
 int serverIndex,
 void* context);
SapManCallbackInfo(
 SapManager::EventType eventType,
 int serverIndex,
 int resourceIndex,
 void* context);
SapManCallbackInfo(
 SAPSTATUS errorValue,
 const char* errorMessage,
 void* context);
SapManCallbackInfo(
SapManager::EventType eventType,
int serverIndex,
void *context,
 int filePercentProgress)
Parameters
eventType Combination of manager events. See the SapManager::RegisterServerCallback method

for the list of possible values.
serverIndex Sapera server index
resourceIndex Sapera resource index
context Pointer to the application context
errorValue Low-level Sapera C library error code
errorMessage Error message as a text string
filePercentProgress File transfer progress

180 • Basic Class Reference Sapera LT ++ Programmer's Manual

Remarks
SapManager objects create an instance of this class before each call to the application callback method, in
order to combine all function arguments into one container.
SapManager uses this class in various situations. The first corresponds to the case when a server is operational
again after being reset. The second case corresponds to the callback reporting mode which is set by calling the
SapManager::SetDisplayStatusMode method.
The third case corresponds to other server related events, for example, when an acquisition device is
physically disconnected. This involves explicitly registering a callback function using the
SapManager::RegisterServerCallback method.
Demo/Example Usage
Not available

SapManCallbackInfo::GetContext
void* GetContext();
Remarks
Gets the application context associated with the call to the application callback. See the
SapManager::SetDisplayStatusMode method for more details.
Demo/Example Usage
Not available

SapManCallbackInfo::GetErrorMessage
const char* GetErrorMessage();
Remarks
Gets the error message associated with the call to the application callback as a text string. See the
SapManager::SetDisplayStatusMode method for more details.
Demo/Example Usage
Not available

SapManCallbackInfo::GetErrorValue
SAPSTATUS GetErrorValue();
Remarks
Gets the low-level Sapera C library error code associated with the call to the application callback. See the
SapManager::SetDisplayStatusMode method for more details.
See the Sapera LT Basic Modules Reference Manual for details on low-level Sapera functionality.
Demo/Example Usage
Not available

SapManCallbackInfo::GetEventType
SapManager::EventType GetEventType();
Remarks
Gets the combination of manager events that triggered the call to the application callback. See the
SapManager::RegisterServerCallback method for more details.
Demo/Example Usage
Not available

SapManCallbackInfo::GetFilePercentProgress
int GetFilePercentProgress() const
Remarks
Gets the file transfer progress, as a percentage of the file size, when writing a file to a device.
Demo/Example Usage
Not available

Sapera LT ++ Programmer's Manual Basic Class Reference • 181

SapManCallbackInfo::GetResourceIndex
int GetResourceIndex();
Remarks
Gets the Sapera resource index associated with the call to the application callback. See the
SapManager::RegisterServerCallback method for more details.
Demo/Example Usage
Not available

SapManCallbackInfo::GetServerIndex
int GetServerIndex();
Remarks
Gets the Sapera server index associated with the call to the application callback. See the
SapManager::ResetServer and SapManager::RegisterServerCallback methods for more details.
Demo/Example Usage
Not available

182 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapMetadata

The SapMetadata Class provides functions to manage GigE-Vision camera metadata (for example, Genie-TS and Linea
GigE). When enabled, supported metadata (for example, the timestamp or device ID) is available in the SapBuffer
object.

The SapMetadata::Create must be called after construction of the SapAcqDevice object and before the
construction of the SapBuffer object.
Note: the metadata information is available in the SapBuffer object; it is not saved with the image.

To use metadata:

• After successfully calling the SapMetadata::Create function , use the Enable function to turn on metadata.

• Use GetSelectorCount to retrieve the number of available metadata items. The GetSelectorName provides the
description of the metadata item.

• Use Select to add metadata items to the buffer. To determine the items that are selected (for example, in a
user configuration set), use IsSelected.

• Use the Extract function to obtain the metadata from the buffer.

• Use the GetExtractedResultCount and GetExtractedResult functions to retrieve the metadata.

#include <SapClassBasic.h>

SapMetadata Class Members
Construction
SapMetadata Class constructor.
Create Allocates the low-level Sapera resources.
Destroy Releases the low-level Sapera resources.
Operations
IsMetadataSupported Returns whether metadata is supported by the acquisition device.
GetMetadataType Returns the metadata type.
Enable Enables metadata in the buffer.
IsEnabled Returns if metadata is enabled in the buffer.
GetSelectorCount Gets the metadata selector count.
GetSelectorName Gets the specified selector’s name.
Select Selects the metadata.
IsSelected Returns if the specified metadata is selected.
Extract Extracts the selected metadata from the buffer.
GetExtractedResultCount Gets the number of extracted metadata items.
GetExtractedResult Gets the specified metadata.
SaveToCSV Saves the metadata to a comma separated values (CSV) file.

SapMetadata Member Functions
The following are members of the SapMetadata Class.

SapMetadata::SapMetadata

Sapera LT ++ Programmer's Manual Basic Class Reference • 183

SapMetadata(SapAcqDevice* pAcqDevice, SapBuffer* pBuffer);
Parameters
pAcqDevice Acquisition device object
pBuffer Buffer object
Remarks
The SapMetadata constructor does not actually create the low-level Sapera resources. To do this, you must
call the SapMetadata::Create method.
Demo/Example Usage
GigE Metadata Demo

SapMetadata::Create
BOOL Create();
Return Value
Returns TRUE if successful, FALSE otherwise.
Remarks
Creates all the low-level Sapera resources needed by the acquisition object. The Create function must be
called after construction of the SapAcqDevice object and before the construction of the SapBuffer object.
Demo/Example Usage
GigE Metadata Demo

SapMetadata::Destroy
BOOL Destroy();
Return Value
Returns TRUE if successful, FALSE otherwise.
Remarks
Destroys all the low-level Sapera resources needed by the acquisition object.
Demo/Example Usage
GigE Metadata Demo

SapMetadata::Enable
BOOL Enable(BOOL enable = TRUE);
Parameters
enable Sets the enable state for metadata.
Return Value
Returns TRUE if successful, FALSE otherwise.
Remarks
Enables metadata for the acquisition device and buffers specified during construction of the SapMetadata
object.
Demo/Example Usage
GigE Metadata Demo

SapMetadata::Extract
BOOL Extract();
BOOL Extract(UINT bufferIndex);
BOOL Extract(UINT bufferIndex, UINT lineIndex);
Parameters
bufferIndex Buffer index. Possible values are from 0 to (SapBuffer::GetCount - 1).
lineIndex Line index. Possible values are from 0 to (SapBuffer::GetHeight - 1).
Return Value

184 • Basic Class Reference Sapera LT ++ Programmer's Manual

Returns TRUE if successful, FALSE otherwise.
Remarks
Extracts the metadata from the buffer specified during construction of the SapMetadata object.
For area scan acquisition, when the buffer count is 1, use the Extract() prototype; when the SapBuffer object
contains multiple buffers, use the Extract(bufIndex) prototype.
For line scan acquisition, use the Extract(bufIndex, lineIndex) prototype.
Use the SapMetadata::GetMetadataType to verify the metadata type (per line or frame).
Demo/Example Usage
GigE Metadata Demo

SapMetadata::GetExtractedResult
BOOL GetExtractedResult(UINT resultIndex, char* name, UINT nameLength, char* value, UINT valueLength)
const;
Parameters
resultIndex Result index. Possible values are from 0 to (SapMetadata::GetExtractedResultCount -1).
name Metadata item name.
nameLength Size (in bytes) of the buffer pointed to by name.
value Metadata value.
valueLength Size (in bytes) of the buffer pointed to by value.
Return Value
Returns TRUE if successful, FALSE otherwise.
Remarks
Extracts the metadata for the specified result index. Use the SapMetadata::GetExtractedResultCount function
to get the number of available metadata results.
Demo/Example Usage
GigE Metadata Demo

SapMetadata::GetExtractedResultCount
UINT GetExtractedResultCount();
Return Value
Returns the number of metadata items for the selected metadata.
Remarks
Returns the number of available metadata results. Use the SapMetadata::GetExtractedResult function to
extract the results.
Demo/Example Usage
GigE Metadata Demo

SapMetadata::GetSelectorCount
UINT GetSelectorCount() const;
Return Value
Returns the number of available metadata items supported by the acquisition device.
Remarks
This value determines the range of the selectorIndex parameter used by the SapMetadata::GetSelectorName
and SapMetadata::IsSelected functions.
Demo/Example Usage
GigE Metadata Demo

SapMetadata::GetSelectorName
BOOL GetSelectorName(UINT selectorIndex, char* name, UINT nameLength) const;
Parameters

Sapera LT ++ Programmer's Manual Basic Class Reference • 185

selectorIndex Selector index. Possible values are from 0 to (SapMetadata::GetSelectorCount -1).
name Metadata item name.
nameLength Size (in bytes) of the buffer pointed to by name.
Return Value
Returns TRUE if successful, FALSE otherwise.
Remarks
Returns the name of the metadata item associated with the specified selector index. The number of metadata
items (selectors) is returned by the SapMetadata::GetSelectorCount method.
Demo/Example Usage
GigE Metadata Demo

SapMetadata::GetMetadataType
MetadataType GetMetadataType();
Return Value
Returns the metadata type. Possible values are:
 SapMetadata::MetadataPerFrame Metadata is inserted per frame.
 SapMetadata::MetadataPerLine Metadata is inserted per line.
 SapMetadata::MetadataUnknown Metadata type is unknown.
Remarks
Gets the metadata type for the acquisition device specified during construction of the SapMetadata object.
Demo/Example Usage
GigE Metadata Demo

SapMetadata::IsEnabled
BOOL IsEnabled();
Return Value
Returns TRUE if metadata is enabled, FALSE otherwise.
Demo/Example Usage
GigE Metadata Demo

SapMetadata::IsMetadataSupported
static BOOL IsMetadataSupported(SapAcqDevice* pAcqDevice);
Parameters
pAcqDevice Acquisition device object
Return Value
Returns TRUE if metadata is supported for the specified acquisition device object, FALSE otherwise.
Remarks
This is a static function and can be called without creating a SapMetadata object.
Demo/Example Usage
GigE Metadata Demo

SapMetadata::IsSelected
BOOL IsSelected(UINT selectorIndex);
Parameters
selectorIndex Index of the metadata item. Possible values are from 0 to (SapMetadata::GetSelectorCount -

1).
Return Value
Returns TRUE if metadata is enabled for the specified metadata item, FALSE otherwise.
Demo/Example Usage

186 • Basic Class Reference Sapera LT ++ Programmer's Manual

GigE Metadata Demo

SapMetadata::SaveToCSV
BOOL SaveToCSV(const char* filename);
Parameters
filename Name of CSV file to save metadata to.
Return Value
Returns TRUE if successful, FALSE otherwise.
Remarks
Extracts the metadata from the specified acquisition device and buffer.
Demo/Example Usage
GigE Metadata Demo

SapMetadata::Select
BOOL Select(UINT selectorIndex, BOOL select = TRUE);
Parameters
selectorIndex Selector index. Possible values are from 0 to (SapMetadata::GetSelectorCount -1).
select Sets the enable state of the specified metadata item.
Return Value
Returns TRUE if successful, FALSE otherwise.
Remarks
Sets the enable state for the specified metadata item. By default, metadata items may be enabled/disabled
depending on the factory/user settings loaded by the device.
Demo/Example Usage
GigE Metadata Demo

Sapera LT ++ Programmer's Manual Basic Class Reference • 187

SapPerformance
The SapPerformance Class implements basic benchmarking functionality. It is used by the SapProcessing Class to
evaluate the time it takes to process one buffer. You may also use it for your own benchmarking needs.

#include <SapClassBasic.h>

SapPerformance Class Members
Construction
SapPerformance Class constructor
Operations
Reset Resets the internal timer
GetTime Gets the number of seconds elapsed since the last timer reset
GetTimeMilli Gets the number of milliseconds elapsed since the last timer reset
GetTimeMicro Gets the number of microseconds elapsed since the last timer reset

SapPerformace Member Functions
The following are members of the SapPerformance Class.

SapPerformance::SapPerformance
SapPerformance();
Remarks
The SapPerformance constructor initializes the internal timer and resets it.
Demo/Example Usage
GigE Sequential Grab Demo, Sequential Grab Demo

SapPerformance::GetTime
float GetTime(BOOL bReset);
Parameters
bReset Specifies whether the internal timer should be reset after it has been queried
Remarks
Gets the number of seconds elapsed since the last timer reset
Demo/Example Usage
GigE Sequential Grab Demo, Sequential Grab Demo

SapPerformance::GetTimeMicro
float GetTimeMicro(BOOL bReset);
Parameters
bReset Specifies whether the internal timer should be reset after it has been queried
Remarks
Gets the number of microseconds elapsed since the last timer reset
Demo/Example Usage
GigE Sequential Grab Demo, Sequential Grab Demo

SapPerformance::GetTimeMilli
float GetTimeMilli(BOOL bReset);
Parameters
bReset Specifies whether the internal timer should be reset after it has been queried
Remarks

188 • Basic Class Reference Sapera LT ++ Programmer's Manual

Gets the number of milliseconds elapsed since the last timer reset
Demo/Example Usage
GigE Sequential Grab Demo, Sequential Grab Demo

SapPerformance::Reset
void Reset();
Remarks
Resets the internal timer. Calling the GetTime, GetTimeMilli, or GetTimeMicro methods then returns the
amount of time elapsed since the reset.
Demo/Example Usage
GigE Sequential Grab Demo, Sequential Grab Demo

Sapera LT ++ Programmer's Manual Basic Class Reference • 189

SapProcessing

The SapProcessing Class is the base class required to implement your own processing. This class cannot be used
directly. Rather, derive your own processing class (for example, SapMyProcessing), override the Run method, and
insert your custom processing code You should then call the Execute method from inside your SapTransfer callback
method.
The SapProcessing Class is a ‘real-time processing template’ that simplifies the synchronization between the transfer
task and the processing task.
When the Run method is called, you may easily retrieve the index of the next buffer resource that is ready to process.
You then simply have to put your custom processing code in the overridden SapProcessing.Run method.
An internal processing thread optimizes buffer processing in real-time. This allows the main application thread to
execute without any concerns for the processing task.
An ‘auto empty’mechanism allows synchronization between SapProcessing and SapTransfer objects in order to process
buffers in real-time without missing any data.

#include <SapClassBasic.h>

SapProcessing Class Members
Construction
SapProcessing Class constructor
Create Allocates the low-level Sapera resources
Destroy Releases the low-level Sapera resources
Attributes
GetBuffer Gets/sets the SapBuffer object with the buffer resources to process
SetBuffer
SetCallbackInfo Sets the application callback method to call after processing each buffer, and the

associated context
GetCallback Gets the current application callback method
GetContext Gets the application context associated with the application callback method
GetTime Gets the execution time for the most recently processed buffer
GetIndex Gets the index of the current or last processed buffer
IsAutoEmpty Gets/sets the ‘auto-empty’ mechanism
SetAutoEmpty
GetThreadPriority Gets/sets the execution priority of the processing thread
SetThreadPriority
Operations
Init Initializes the processing index
Execute Process the next buffer or a specific one, possibly skipping buffers in the process
ExecuteNext Process the next buffer, without skipping any buffers in the process
Run Method overridden in application code to implement custom processing

SapProcessing Member Functions
The following are members of the SapProcessing Class.

SapProcessing::SapProcessing
SapProcessing(SapBuffer*pBuffer, SapProCallback pCallback = NULL, void* pContext = NULL);

190 • Basic Class Reference Sapera LT ++ Programmer's Manual

Parameters
pBuffer SapBuffer object with the buffer resources to process
pCallback Application callback function to be called after each buffer has been processed.

The callback function must be declared as:
void MyCallback(SapProCallbackInfo* pInfo);

pContext Optional pointer to an application context to be passed to the callback function. If pCallback is
NULL, this parameter is ignored.

Remarks
The SapProcessing constructor does not actually create the low-level Sapera resources. To do this, you must
call the Create method.
This class cannot be instantiated directly. You must first derive a new class from it (for example,
SapMyProcessing), override the Run method, and then put your custom processing code within that method.
Demo/Example Usage
Color Conversion Demo, FlatField Demo, GigE FlatField Demo

SapProcessing::Create
BOOL Create();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Creates all the low-level Sapera resources needed by the processing object. Also initializes the processing
buffer index using the current SapBuffer index. You must call SapBuffer::Create before this method.
Demo/Example Usage
Color Conversion Demo, FlatField Demo, GigE FlatField Demo

SapProcessing::Destroy
BOOL Destroy();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Destroys all the low-level Sapera resources needed by the processing object. You must call this method before
SapBuffer::Destroy.
Demo/Example Usage
Color Conversion Demo, FlatField Demo, GigE FlatField Demo

SapProcessing::Execute
void Execute();
void Execute(int index);
Parameters
index Index of the buffer resource to process
Remarks
If the index is specified, the corresponding buffer in the SapBuffer object is processed through the internal
processing thread and the Run method. Otherwise, the current buffer is processed.
If you want to process data acquired in real-time in a buffer through the SapTransfer class, simply call the
Execute method within the SapTransfer callback function in the application code. This will eventually call the
Run method in your derived processing class.
The SapProcessing class will then process as many frames as possible without slowing down the transfer
process. This means that some buffers will be skipped if the processing task is too slow to keep up with the
acquisition. If you need all frames to be processed, call the ExecuteNext method instead.
Demo/Example Usage
Color Conversion Demo, FlatField Demo, GigE FlatField Demo

Sapera LT ++ Programmer's Manual Basic Class Reference • 191

SapProcessing::ExecuteNext
void ExecuteNext();
Remarks
This method processes the next unprocessed buffer in the SapBuffer object through the internal processing
thread and the Run method.
If you want to process data acquired in real-time into a buffer through the SapTransfer class, simply call the
ExecuteNext method within the SapTransfer callback method. This will eventually call the Run method in your
derived processing class.
The SapProcessing class will then process all the frames and possibly slow down the transfer process if
needed. If the processing task is fast enough to keep-up with the incoming frames, ExecuteNext behaves
exactly the same way as Execute. Otherwise, the transfer process must be slowed down to give the
SapProcessing object the chance to process every frame.
If you want to process as many frames as possible without affecting the transfer process, use the Execute
method instead.
Note that this function does not support the SapXferPair::CycleNextEmpty and
SapXferPair::CycleNextWithTrash transfer cycle modes.
Demo/Example Usage
FlatField Demo, GigE FlatField Demo

SapProcessing::GetBuffer, SapProcessing::SetBuffer
SapBuffer* GetBuffer();
BOOL SetBuffer(SapBuffer* pBuffer);
Parameters
pBuffer SapBuffer object containing the buffer resources to process
Remarks
Gets/sets the SapBuffer object with the buffer resources to process. You can only call SetBuffer before the
Create method.
Demo/Example Usage
Not available

SapProcessing::GetCallback
SapProCallback GetCallback();
Remarks
Gets the current application callback method. The initial value for this attribute is NULL, unless you specify
another value in the constructor.
See the SapProcessing constructor for more details.
Demo/Example Usage
Not available

SapProcessing::GetContext
void* GetContext();
Remarks
Gets the application context associated with the application callback method. The initial value for this attribute
is NULL, unless you specify another value in the constructor.
See the SapProcessing constructor for more details.
Demo/Example Usage
Not available

SapProcessing::GetIndex
int GetIndex();
Remarks
When you call GetIndex from within the Run method of your custom processing class, it returns the index of

192 • Basic Class Reference Sapera LT ++ Programmer's Manual

the current buffer to process. When you call it at any other time, it returns the index of the last processed
buffer.
Demo/Example Usage
Not available

SapProcessing::GetThreadPriority, SapProcessing::SetThreadPriority
int GetThreadPriority();
void SetThreadPriority(int priority);
Remarks
Gets/sets the execution priority of the processing thread. The initial value for this attribute is normal priority,
unless you construct this object using an existing SapProcessing object.
For a detailed description of this setting, refer to the SetThreadPriority function in the Win32 documentation.
Demo/Example Usage
Not available

SapProcessing::GetTime
float GetTime();
Remarks
Gets the execution time for the most recently processed buffer (in milliseconds). The initial value for this
attribute is 0.
Demo/Example Usage
Color Conversion Demo, FlatField Demo, GigE FlatField Demo

SapProcessing::Init
void Init();
Remarks
Initializes the processing index from the current buffer index. The Create method automatically performs this
action. This ensures correct synchronization between the processing and buffer index. So you normally do not
have to call Init.
However, if you use the ExecuteNext method, but do not call it for every frame, then the processing index will
not be synchronized with the buffer index. In such a case you must call Init explicitly to restore
synchronization.
Demo/Example Usage
FlatField Demo, GigE FlatField Demo

SapProcessing::IsAutoEmpty, SapProcessing::SetAutoEmpty
BOOL IsAutoEmpty();
void SetAutoEmpty(BOOL isAutoEmpty);
Remarks
Gets/sets the ‘auto-empty’ mechanism, used for synchronizing the transfer and processing tasks in the
application program.
By default, the SapTransfer lass automatically calls SapBuffer::SetState(SapBuffer::StateEmpty) after an
image has been acquired into a buffer. This means that a new image could be acquired in the same buffer
before the processing task can even process it.
In order to correctly synchronize the transfer and processing tasks, you must first disable this behavior by
calling SapTransfer::SetAutoEmpty(FALSE). Then call SapProcessing::SetAutoEmpty(TRUE) to enable it in this
class instead.
As a result, no images will be acquired in the current buffer as long as the Run method is executing. The buffer
state is then reset before the application callback method, if any, is called.
The initial value for this attribute is FALSE, unless you construct this object using an existing SapProcessing
object.
Demo/Example Usage
Color Conversion Demo, FlatField Demo, GigE FlatField Demo

Sapera LT ++ Programmer's Manual Basic Class Reference • 193

SapProcessing::Run
virtual BOOL Run() = 0;
Remarks
This method is automatically invoked by the internal processing thread whenever a buffer is available for
processing.
You first need to derive your own class from SapProcessing. Then override Run, and add your own processing
code to it. You can use the GetIndex method to get the index of the buffer to process.
Demo/Example Usage
Color Conversion Demo, FlatField Demo, GigE FlatField Demo

SapProcessing::SetCallbackInfo
BOOL SetCallbackInfo(SapProCallback pCallback, void* pContext = NULL);
Remarks
Sets the application callback method to call after processing each buffer, and the associated context. You can
only call SetCallbackInfo before the Create method.
See the SapProcessing constructor for more details.
Demo/Example Usage
Not available

194 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapProCallbackInfo
The SapProCallbackInfo Class acts as a container for storing all arguments to the callback function for the
SapProcessing Class.

#include <SapClassBasic.h>

SapProCallbackInfo Class Members
Construction
SapProCallbackInfo Class constructor
Attributes
GetProcessing Gets the SapProcessing object associated with the processing callback function
GetContext Gets the application context associated with the SapProcessing callback function

SapProCallbackInfo Member Functions
The following are members of the SapProCallbackInfo Class.

SapProCallbackInfo::SapProCallbackInfo
SapProCallbackInfo(SapProcessing* pPro, void* context);
Parameters
pPro SapProcessing object that calls the callback function
context Pointer to the application context
Remarks
SapProcessing objects create an instance of this class before each call to the application callback method, in
order to combine all function arguments into one container.
SapProcessing uses this class when notifying the application that a buffer has been fully processed.
Demo/Example Usage
Color Conversion Demo, FlatField Demo, GigE FlatField Demo

SapProCallbackInfo::GetContext
void* GetContext();
Remarks
Gets the context information associated with the application callback function. See the SapProcessing
constructor for more details.
Demo/Example Usage
Not available

SapProCallbackInfo::GetProcessing
SapProcessing* GetProcessing();
Remarks
Gets the SapProcessing object associated with the processing callback function. See the SapProcessing
constructor for more details.
Demo/Example Usage
Not available

Sapera LT ++ Programmer's Manual Basic Class Reference • 195

SapTransfer

The SapTransfer Class implements functionality for managing a generic transfer process, that is, the action of
transferring data from one source node to a destination node. All the following classes derived from the SapXferNode
Class are considered to be transfer nodes: SapAcquisition, SapAcqDevice, SapBuffer. The following classes, also
considered as transfer nodes, are documented in the Sapera LT ++ Legacy Classes Reference Manual: SapBufferRoi,
SapBufferWithTrash, SapBufferRemote, SapCab, SapDsp, and SapPixPro.

There are also a number of Specialized Transfer Classes available, for example, SapAcqToBuf. These classes are all
derived from SapTransfer, and they may be used to implement common transfer configurations.

#include <SapClassBasic.h>

SapTransfer Class Members
Construction
SapTransfer Class constructor
Create Allocates the low-level Sapera resources
Destroy Releases the low-level Sapera resources
Attributes
GetLocation Gets/sets the location where the transfer resource is located
SetLocation
AddPair Adds a new pair of source and destination transfer nodes
GetNumPairs Gets the number of pairs of source and destination transfer nodes
GetPair Gets access to a specific transfer pair
RemoveAllPairs Removes all transfer pairs
SetCallbackInfo Sets the application callback method for transfer events and the associated context
SetTrashCallbackInfo Sets the trash buffer application callback method for transfer events
GetCallback Gets the current application callback function for transfer events
GetTrashCallback Gets the current trash buffer application callback function for transfer events
GetContext Gets the application context associated with transfer events
IsGrabbing Checks whether continuous data transfer is currently in progress
IsAutoEmpty Gets/sets the auto-empty mechanism
SetAutoEmpty
IsAutoConnect Gets/sets automatic activation of physical transfer data paths in the Create method
SetAutoConnect
IsConnected Checks whether the physical transfer data paths have been activated
GetStartMode Gets/set the synchronization mode used when starting a data transfer
SetStartMode
IsCycleModeAvailable Gets the availability of a specific buffer cycling mode for a specific transfer pair
GetConnectTimeout Gets/sets the communication timeout value for the Connect method
SetConnectTimeout

196 • Basic Class Reference Sapera LT ++ Programmer's Manual

GetCounterStampInfo Gets the destination buffer counter stamp capabilities for a specific transfer pair
GetHandle Gets the low-level Sapera handle of the transfer resource
RegisterCallback Registers a callback function for the event associated with a specified name or

index
UnregisterCallback Unregisters a callback function on the event associated with a specified name or

index
Operations
Init Performs the setup for data transfers
Connect Activates the physical transfer data paths
Disconnect Deactivates the physical transfer data paths
Select Sets the current source and destination resource indexes
Snap Transfers a predetermined number of frames
Grab Starts continuous data transfer
Freeze Issues a stop request for continuous data transfer
Abort Stops the data transfer immediately using brute force
Wait Waits for complete termination of data transfer
IsCapabilityValid Checks for the availability of a low-level Sapera C library capability
IsParameterValid Checks for the availability of a low-level Sapera C library parameter
GetCapability Gets the value of a low-level Sapera C library capability
SetParameter Gets/sets the value of a low-level Sapera C library parameter
SetParameter

SapTransfer Member Functions
The following are members of the SapTransfer Class.

SapTransfer::SapTransfer
SapTransfer(
 SapXferCallback pCallback = NULL,
 void* pContext = NULL,
 SapLocation loc = SapLocation::ServerUnknown
);
SapTransfer(
 SapXferCallback pCallback,
 SapXferCallback pTrashCallback,
 void* pContext,
 SapLocation loc = SapLocation::ServerUnknown
);
Parameters
pCallback Application callback function to be called each time a transfer event happens. The callback

function must be declared as:
void MyCallback(SapXferCallbackInfo* pInfo);

pTrashCallback Application callback function to be called each time a trash buffer transfer event happens
pContext Optional pointer to an application context to be passed to the callback function. If

pCallback is NULL, this parameter is ignored.
loc SapLocation object specifying the server on which the transfer resource is to be created
Remarks
The SapTransfer constructor does not actually create the low-level Sapera resources. To do this, you must call
the Create method.
See the SapXferCallbackInfo class for information on the functions available to retrieve information about
registered events. However, the constructor only allows access to a subset of the SapXferCallbackInfo:

• SapXferCallbackInfo::GetTransfer

Sapera LT ++ Programmer's Manual Basic Class Reference • 197

• SapXferCallbackInfo::GetContext
• SapXferCallbackInfo::GetEventType
• SapXferCallbackInfo::GetEventCount
• SapXferCallbackInfo::IsTrash
• SapXferCallbackInfo::GetPairIndex

Use the SapTransfer::RegisterCallback function if you require access to newer functionality available in
SapXferCallbackInfo (if supported by hardware), such as 64-bit event types, custom data, and host and
auxiliary timestamps. SapXferCallbackInfo functions available exclusively when registering an event with
SapTransfer::RegisterCallback are:

• SapXferCallbackInfo::GetAuxiliaryTimestamp
• SapXferCallbackInfo::GetCustomData
• SapXferCallbackInfo::GetCustomSize
• SapXferCallbackInfo::GetEventInfo
• SapXferCallbackInfo::GetGenericParam0

SapXferCallbackInfo::GetGenericParam1
SapXferCallbackInfo::GetGenericParam2
SapXferCallbackInfo::GetGenericParam3

• SapXferCallbackInfo::GetHostTimestamp

You can use the Specialized Transfer Classes (for example, SapAcqToBuf) instead of using this class directly,
since they simplify the process of instantiating SapTransfer objects that correspond to common transfer
configurations. If you use this class , you must use the AddPair method to add transfer pairs of source and
destination nodes. You must do this before calling the Create method.
Trash buffer functionality is only available when a SapBufferWithTrash object is used as a destination transfer
node. In this case, the regular callback function is also used for trash buffers, unless you override it using
pTrashCallback. If you do not use SapBufferWithTrash , then trash buffer settings are ignored.
The specified pCallback and pContext apply to all transfer pairs by default, unless you override it for specific
pairs using the SapXferPair::SetCallbackInfo method.
By default, regular and trash buffer callback functions are called at each end of frame event, that is, when a
complete image has been transferred. You may specify different event types for regular buffers by calling the
SapXferPair::GetEventType, SapXferPair::SetEventType method. You cannot change the event type for trash
buffers, however.
The server index of the loc argument may be set to SapLocation::ServerUnknown. In this case, the most
appropriate server for the low-level transfer resource is automatically selected when you call the Create
method. The loc resource index is ignored.
Demo/Example Usage
Color Conversion Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo,
GigE Sequential Grab Demo, Grab Demo, Sequential Grab Demo, GigE Auto-White Balance Example, GigE
Camera LUT Example, Grab CameraLink Example, Grab Console Example, Grab LUT Example, Grab MFC
Example

SapTransfer::Abort
BOOL Abort();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Stops data transfers immediately using brute force, without waiting for the current frame to be completely
transferred.
You should call Abort only for emergencies. For example, calling Wait after the Snap or Grab methods may fail
because of a timeout condition (usually hardware-related). In this case, using Abort is often the only way to
correct the situation.
Demo/Example Usage
Color Conversion Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo,

198 • Basic Class Reference Sapera LT ++ Programmer's Manual

GigE Sequential Grab Demo, Grab Demo, Sequential Grab Demo, Grab CameraLink Example, Grab LUT
Example, Grab MFC Example

SapTransfer::AddPair
BOOL AddPair(SapXferPair &pair);
Parameters
pair Transfer pair of source and destination nodes
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Adds a new pair of source and destination transfer nodes to the current object. You can only call this method
before the Create method. However, you do not need to call it if you are using the Specialized Transfer Classes
.
See the SapXferPair Class for more details.
Demo/Example Usage
Not available

SapTransfer::Connect
BOOL Connect();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Activates the physical transfer data paths associated with a transfer object.
You normally do not need to use this method, as it is called automatically by the Create method. It is useful
when used together with the Disconnect method, as in the following case:
 pXfer->Disconnect();

// Modify some transfer parameters
pXfer->Connect();

This allows the modification of transfer parameters (attributes) through methods in the SapXferPair Class, or
through calls to the SetParameter method, since these are not accessible after calling Destroy.
The Create method can also skip the call to Connect altogether, if you first call the SetAutoConnect method to
turn off auto-connect, as in the following case:
 pXfer->SetAutoConnect(FALSE);

pXfer->Create();
// Modify some transfer parameters
pXfer->Connect();

When calling this method to connect a transfer object with a very large number of buffers, you may encounter
a timeout condition. This is due to the fact that the amount of time needed to successfully complete the
command is larger than the default Sapera LT command timeout value. In this case, you can use the
SetConnectTimeout method to increase this value.
Demo/Example Usage
Color Conversion Demo, Dual Acquisition Demo, FlatField Demo, GigE FlatField Demo, Grab Demo, Sequential
Grab Demo, GigE Auto-White Balance Example

SapTransfer::Create
BOOL Create();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Creates all the low-level Sapera resources needed by the transfer object. Always call this method after the
Create methods of source and destination nodes for all transfer pairs.
By default, Create automatically calls the Connect method to activate the physical transfer data paths. Calling
SetAutoConnect(FALSE) allows you to change values of transfer parameters (or attributes) through methods in

Sapera LT ++ Programmer's Manual Basic Class Reference • 199

the SapXferPair Class, or through calls to the SetParameter method, after calling Create. You must then call
Connect explicitly to complete the setup of the transfer resource.
When calling this method to create a transfer object with a very large number of buffers, you may encounter a
timeout condition. This is due to the fact that the amount of time needed to successfully complete the
command is larger than the default Sapera LT command timeout value. In this case, you can use the
SetConnectTimeout method to increase this value.
Demo/Example Usage
Color Conversion Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo,
GigE Sequential Grab Demo, Grab Demo, Sequential Grab Demo, GigE Auto-White Balance Example, GigE
Camera LUT Example, Grab CameraLink Example, Grab Console Example, Grab LUT Example, Grab MFC
Example

SapTransfer::Destroy
BOOL Destroy();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Destroys all the low-level Sapera resources needed by the transfer object. Always call this method before the
Destroy methods of source and destination nodes for all transfer pairs.
Note that Destroy automatically calls the Disconnect method to deactivate the physical transfer data paths
associated with the transfer object.
Demo/Example Usage
Color Conversion Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo,
GigE Sequential Grab Demo, Grab Demo, Sequential Grab Demo, GigE Auto-White Balance Example, GigE
Camera LUT Example, Grab CameraLink Example, Grab Console Example, Grab LUT Example, Grab MFC
Example

SapTransfer::Disconnect
BOOL Disconnect();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Deactivates the physical transfer data paths associated with a transfer object.
You normally do not need to use Disconnect, as it is called automatically by the Destroy method. It is only
useful when used together with the Connect method.
See the Connect method for more details.
Demo/Example Usage
GigE Auto-White Balance Example

SapTransfer::Freeze
BOOL Freeze();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Issues a stop request for the current continuous transfer (started with the Grab method). The actual data
transfer will end only after the current frame is completely transferred, so you should call the Wait method
immediately after Freeze to ensure correct synchronization.
Demo/Example Usage
Color Conversion Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo,
GigE Sequential Grab Demo, Grab Demo, Sequential Grab Demo, GigE Auto-White Balance Example, GigE
Camera LUT Example, Grab CameraLink Example, Grab Console Example, Grab LUT Example, Grab MFC
Example

SapTransfer::GetCallback

200 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapXferCallback GetCallback();
Remarks
Gets the current application callback function for transfer events. The initial value for this attribute is NULL
unless you specify another value in the constructor.
See the SapTransfer constructor for more details.
Demo/Example Usage
Not available

SapTransfer::GetCapability
BOOL GetCapability(int cap, void* pValue);
Parameters
cap Low-level Sapera C library capability to read
pValue Pointer to capability value to read back
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
This method allows direct read access to low-level Sapera C library capabilities for the transfer module. It
needs a pointer to a memory area large enough to receive the capability value, which is usually a 32-bit
integer.
You will rarely need to use GetCapability. The SapTransfer Class already uses important capabilities internally
for self-configuration and validation.
See the Sapera LT Basic Modules Reference Manual for a description of all capabilities and their possible
values.
Demo/Example Usage
GigE Sequential Grab Demo, Grab Demo, Sequential Grab Demo

SapTransfer::GetConnectTimeout, SapTransfer::SetConnectTimeout
int GetConnectTimeout();
BOOL SetConnectTimeout (int timeout);
Remarks
Gets/sets the communication timeout override (in milliseconds) for the Connect method.
The time required by Connect can be high when the amount of memory taken by the buffer resources is very
large, and can even exceed the Sapera LT communication timeout value (obtained by calling
SapManager::GetCommandTimeout). In this case, the call to Connect fails with a timeout condition. The
timeout argument can then be used to specify a larger amount of time. The largest of this value and of the
communication timeout value is then used internally by Connect.
The new timeout value is used either when Connect is called directly by application code, or automatically
through the Create method.
The initial value for this attribute is 0.
Demo/Example Usage
Not available

SapTransfer::GetContext
void* GetContext();
Remarks
Gets the application context associated with transfer events. This context is the same for regular and trash
buffer callback functions, even if you explicitly specified a different trash buffer function in the SapTransfer
constructor or using the SetTrashCallbackInfo method.
The initial value for this attribute is NULL unless you specify another value in the constructor.
See the SapTransfer constructor for more details.
Demo/Example Usage
Not available

Sapera LT ++ Programmer's Manual Basic Class Reference • 201

SapTransfer::GetCounterStampInfo
const SapXferCounterStampInfo* GetCounterStampInfo(int pairIndex);
Parameters
pairIndex Index of the desired transfer pair
Remarks
Gets the destination buffer counter stamp capabilities for a specific transfer pair.
The returned SapXferCounterStampInfo object has the following attributes:
 BOOL IsSupported() Returns TRUE if the current transfer device can report these

capabilities
 BOOL IsAvailable() Returns TRUE if counter stamp is available
 int GetMaxValue() Returns the maximum counter stamp value
 SapXferPair::EventType

GetEventType()
Returns the possible event types (combined using bitwise OR) that
identify the reference point for the counter stamp. See the
SapXferPair::GetEventType, SapXferPair::SetEventType method for
a list of possible values.

 SapXferPair::
CounterStampTimeBaseGetTimeBase()

Returns the possible base units (combined using bitwise OR) used
for the counter stamp. See the
SapXferPair::GetCounterStampTimeBase,
SapXferPair::SetCounterStampTimeBase method for a list of
possible values.

Demo/Example Usage
Not available

SapTransfer::GetHandle
CORHANDLE GetHandle();
Remarks
Gets the low-level Sapera handle of the transfer resource, which you may then use from the low-level Sapera
functionality. The handle is only valid after you call the Create method.
See the Sapera LT Basic Modules Reference Manual for details on low-level Sapera functionality.
Demo/Example Usage
Not available

SapTransfer::GetLocation, SapTransfer::SetLocation
SapLocation GetLocation();
BOOL SetLocation(SapLocation location);
Remarks
Gets/sets the location where the transfer resource is located.
If you specify a value for this attribute in the SapTransfer constructor, then it is used as the location of all
SapXferPair objects that belong to this transfer object.
If you do not specify a value for this attribute, then it defaults to SapLocation::ServerUnknown. When the
Create method is called, each SapXferPair object will then use the most appropriate location using the source
and destination transfer nodes for the pair.
Demo/Example Usage
Not available

SapTransfer::GetNumPairs
int GetNumPairs();
Remarks
Gets the number of pairs of source and destination transfer nodes. This value starts at 0 when the transfer
object is constructed, increments by 1 at each call to the AddPair method, and is reset to 0 by the
RemoveAllPairs method.
Demo/Example Usage

202 • Basic Class Reference Sapera LT ++ Programmer's Manual

Not available

SapTransfer::GetPair
SapXferPair* GetPair(int pairIndex);
Parameters
pairIndex Index of the desired transfer pair
Remarks
Gets access to a specific pair of source and destination transfer nodes. Valid pair indices go from 0 to the value
returned by the GetNumPairs method minus 1.
See the SapXferPair Class for more details.
Demo/Example Usage
GigE Camera Demo, GigE Sequential Grab Demo, Sequential Grab Demo

SapTransfer::GetParameter, SapTransfer::SetParameter
BOOL GetParameter(int param, void* pValue);
BOOL SetParameter(int param, int value);
BOOL SetParameter(int param, void* pValue);
Parameters
param Low-level Sapera C library parameter to read or write
pValue Pointer to parameter value to read back or to write
value New parameter value to write
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
These methods allow direct read/write access to low-level Sapera C library parameters for the transfer
module. The GetParameter method needs a pointer to a memory area large enough to receive the parameter
value, which is usually a 32-bit integer. The first form of SetParameter accepts a 32-bit value for the new
value. The second form takes a pointer to the new value, and is required when the parameter uses more than
32-bits of storage.
Note that you will rarely need to use these methods. You should first make certain that what you need is not
already supported through the SapTransfer or SapXferPair Class. Also, directly setting parameter values may
interfere with the correct operation of the class.
Since many parameters cannot be changed when the physical transfer data paths are activated, you may need
to use the Disconnect and Connect methods when modifying parameter values. See the Connect method for
more details.
See the Sapera LT Basic Modules Reference Manual for a description of all parameters and their possible
values.
Demo/Example Usage
Not available

SapTransfer::GetStartMode, SapTransfer::SetStartMode
SapTransfer::StartMode GetStartMode();
BOOL SetStartMode(SapTransfer::StartMode startMode);
Parameters
startMode The following transfer synchronization modes are available when starting a transfer using the

Snap method:
 SapTransfer::StartAsynchronous Return immediately without waiting for the transfer to

begin
 SapTransfer::StartSynchronous For single frame transfers, first wait for any active

transfer to end, and return only when the current
transfer has been completed.

 SapTransfer::StartHalfAsynchronous For single frame transfers, first wait for any active
transfer to end, then immediately return without waiting

Sapera LT ++ Programmer's Manual Basic Class Reference • 203

for the current transfer to begin.
 SapTransfer::StartSequential If a multi-level transfer is defined (that is, acquisition to

on-board memory to host memory), wait until all frames
in the sequence are in the on-board memory before
sending them to the host memory.

Remarks
Gets/sets the synchronization mode used when starting a data transfer. The default value for this attribute is
StartAsynchronous.
You can only call SetStartMode before the Create method.
Demo/Example Usage
Not available

SapTransfer::GetTrashCallback
SapXferCallback GetTrashCallback();
Remarks
Gets the current trash buffer application callback function for transfer events. This function is the same as the
one returned using the GetCallback method, unless you explicitly specified a trash buffer callback function in
the SapTransfer constructor or using the SetTrashCallbackInfo method
The initial value for this attribute is NULL unless you specify another value in the constructor. See the
SapTransfer constructor for more details.
Demo/Example Usage
Not available

SapTransfer::Grab
BOOL Grab();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Starts a continuous transfer from the source node to the destination node of all transfer pairs in the current
SapTransfer object.
Continuous transfers are always started asynchronously, that is, no explicit checking is performed to verify if a
previous transfer is still active. If you want to perform this check, then you first need to call the Wait method.
If you call the Select method before Grab, then the transfer will be performed starting at the new current
source and destination resources indexes. Otherwise, the transfer will proceed using the indexes from the end
of the previous transfer operation (using Snap or Grab). If there is no previous transfer, then appropriate
defaults from the call to the Create method will be used.
Demo/Example Usage
Color Conversion Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo,
GigE Sequential Grab Demo, Grab Demo, Sequential Grab Demo, GigE Auto-White Balance Example, GigE
Camera LUT Example, Grab CameraLink Example, Grab Console Example, Grab LUT Example, Grab MFC
Example

SapTransfer::Init
BOOL Init(BOOL resetIndex = TRUE);
Parameters
resetIndex TRUE to initialize the buffer index, FALSE otherwise
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Performs the setup for data transfers. Set resetIndex to TRUE if you also want to set all destination buffer
resources to the empty state, and set the SapBuffer index to the first buffer in its list (through the
SapBuffer::ResetIndex method).
You usually do not have to call Init explicitly, since the Create method already does this.

204 • Basic Class Reference Sapera LT ++ Programmer's Manual

Demo/Example Usage
FlatField Demo, GigE Camera Demo, GigE FlatField Demo, GigE Sequential Grab Demo, Sequential Grab Demo

SapTransfer::IsAutoConnect, SapTransfer::SetAutoConnect
BOOL IsAutoConnect();
void SetAutoConnect(BOOL bAutoConnect);
Remarks
Gets/sets automatic activation of physical transfer data paths. Calling the Create method automatically calls
the Connect method when this attribute is TRUE.
Setting auto-connect to FALSE allows you to change values of transfer parameters (attributes) through
methods in the SapXferPair Class, or through calls to the SetParameter method, after calling Create. You must
then call Connect explicitly to complete the setup of the transfer resource.
The initial value for this attribute is TRUE, unless you construct this object using an existing SapTransfer
object.
Demo/Example Usage
Not available

SapTransfer::IsAutoEmpty, SapTransfer::SetAutoEmpty
BOOL IsAutoEmpty();
void SetAutoEmpty(BOOL bAutoEmpty);
Remarks
Gets/sets the auto-empty mechanism, used for synchronizing the transfer with the processing and/or view
tasks in the application program.
By default, this class automatically calls SapBuffer::SetState(SapBuffer::StateEmpty) after an image has been
acquired into a buffer. This means that a new image could be acquired in the same buffer before the
processing or view task can even use it.
In this case, you should call SetAutoEmpty(FALSE) to disable this behavior in this class. You then call
SapProcessing:: SetAutoEmpty(TRUE) or SapView::SetAutoEmpty(TRUE), depending on which processing and
view task is executed last. Exactly one of the three classes must empty the buffer.
It is also possible to completely disable the auto-empty mechanism for the SapTransfer, SapProcessing, and
SapView, classes. In this case, you must explicitly call SapBuffer::SetState to empty buffers whenever you
have finished using their contents.
The auto-empty mechanism does not apply when the destination node is not a SapBuffer object.
The initial value for this attribute is TRUE, unless you construct this object using an existing SapTransfer
object.
Demo/Example Usage
Color Conversion Demo, FlatField Demo, GigE FlatField Demo

SapTransfer::IsCapabilityValid
BOOL IsCapabilityValid(int cap);
Parameters
cap Low-level Sapera C library capability to check
Return Value
Returns TRUE if the capability is supported, FALSE otherwise
Remarks
Checks for the availability of a low-level Sapera C library capability for the transfer module. Call this method
before GetCapability to avoid invalid or not available capability errors.
Note that this method is rarely needed. The SapTransfer class already uses important capabilities internally for
self-configuration and validation.
See the Sapera LT Basic Modules Reference Manual for a description of all capabilities and their possible
values.
Demo/Example Usage
GigE Sequential Grab Demo, IO Demo, Sequential Grab Demo

Sapera LT ++ Programmer's Manual Basic Class Reference • 205

SapTransfer::IsConnected
BOOL IsConnected();
Remarks
Checks whether the physical transfer data paths have been activated. By default, calling the Create method
automatically invokes the Connect method, so that IsConnected returns TRUE. If you call
SetAutoConnect(FALSE) before calling the Create method, then IsConnected returns FALSE.
If you explicitly call the Connect method, then IsConnected returns TRUE. If you explicitly call the Disconnect
method, then IsConnected returns FALSE.
The initial value for this attribute is FALSE.
Demo/Example Usage
Not available

SapTransfer::IsCycleModeAvailable
BOOL IsCycleModeAvailable(int pairIndex, SapXferPair::CycleMode cycleMode);
Parameters
pairIndex Index of the desired transfer pair
cycleMode Cycle mode to check for
Remarks
Gets the availability of a specific buffer cycling mode for a specific transfer pair. Valid pair indices go from 0 to
the value returned by the GetNumPairs method minus 1.
See the SapXferPair::GetCycleMode method for a list of valid values for the cycleMode argument..
Demo/Example Usage
Not available

SapTransfer::IsGrabbing
BOOL IsGrabbing();
Remarks
Returns TRUE if continuous data transfer is in progress, FALSE otherwise. Use the Grab method to initiate
continuous transfer.
The value of this attribute is only relevant after calling the Create method. Otherwise, it always returns FALSE.
Demo/Example Usage
Color Conversion Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo,
Grab Demo

SapTransfer::IsParameterValid
BOOL IsParameterValid(int param);
Parameters
param Low-level Sapera C library parameter to check
Return Value
Returns TRUE if the parameter is supported, FALSE otherwise
Remarks
Checks for the availability of a low-level Sapera C library parameter for the transfer module. Call this method
before GetParameter to avoid invalid or not available parameter errors.
Note that this method is rarely needed. The SapTransfer class already uses important parameters internally for
self-configuration and validation.
See the Sapera LT Basic Modules Reference Manual for a description of all parameters and their possible
values.
Demo/Example Usage
Not available

SapTransfer::RegisterCallback

206 • Basic Class Reference Sapera LT ++ Programmer's Manual

BOOL RegisterCallback(EventType eventType, SapXferCallback callback, void *context, UINT32
xferElement);
Parameters
eventType Event type. See the acquisition device User’s Manual for the list of supported transfer events.
callback Address of a user callback function of the following form:

void MyCallback(SapAcqDeviceCallbackInfo* pInfo)
{
}

context Pointer to a user storage (that is, variable, structure, buffer, etc). Can be NULL.
xFerElement Possible values are:
 ElementPair Sets the callback for a source destination pair
 ElementGroup Sets the callback for a source and all its destination pairs
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Registers an event by associating a callback function for the specified event type. When the event occurs in
the transfer module, this callback function is called. It provides information on the corresponding event using a
SapXferrCallbackInfo object. Refer to this class for more details.
Use the SapTransfer::Select function to select the source/destination pair for which to register the callback. If
setting a callback using the ElementGroup setting, the callback is registered for the all the source/destination
pairs for the source of the currently selected source/destination pair.
The context pointer is also returned by the callback function, allowing for the of exchange application specific
information.
Example
void MyCallback(SapAcqDeviceCallbackInfo* pInfo)
{
 // Access information using functions of SapAcqDeviceCallbackInfo class
 // ...
}

main()
{
 // ...
 xFer.RegisterCallback(“FeatureValueChanged”, MyCallback, NULL);
 // ...
 xFer.UnregisterCallback(“FeatureValueChanged”);
 // ...
}
Demo/Example Usage
GigE FlatField Demo, Camera Events Example, Camera Features Example

SapTransfer::RemoveAllPairs
BOOL RemoveAllPairs();
Remarks
Removes all pairs of source and destination transfer nodes
You can only call this mewthod before the Create method or after the Destroy method.
Demo/Example Usage
Not available

SapTransfer::Select
BOOL Select(SapXferPair *pPair, int srcIndex = -1, int dstIndex = -1);
BOOL Select(int pairIndex, int srcIndex = -1, int dstIndex = -1);
Parameters
pPair Pointer to new transfer pair
srcIndex New resource index for source transfer node
dstIndex New resource index for destination transfer node

Sapera LT ++ Programmer's Manual Basic Class Reference • 207

pairIndex Index of new transfer pair
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Sets a new transfer pair and the current source/destination transfer node resource indexes.
There is usually only one transfer pair per SapTransfer object, in which case the pairIndex argument is 0. The
source node is usually a SapAcquisition or SapAcqDevice object, in which case the srcIndex argument is 0.
Since the destination node is usually a SapBuffer object, the dstIndex argument then represents a buffer
resource index.
Setting srcIndex and dstIndex to -1 allows for the selection of a new transfer pair while keeping its current
source and destination resources indexes.
The Select method is useful in two cases. It allows the selection of pair and resource indexes before changing
values of transfer parameters (or attributes) through methods in the SapXferPair Class, or through calls to the
SetParameter method. It also allows precise selection of the current transfer node resource indexes before
calling the Snap or Grab methods. It is then possible, for example, to know precisely in which buffer resource
the next image will be acquired.
Demo/Example Usage
Not available

SapTransfer::SetCallbackInfo
BOOL SetCallbackInfo(SapXferCallback pCallback, void* pContext = NULL);
Remarks
Sets the application callback method for transfer events and the associated context. You can only call
SetCallbackInfo before the Create method.
See the SapTransfer constructor for more details.
Demo/Example Usage
Not available

SapTransfer::SetTrashCallbackInfo
BOOL SetTrashCallbackInfo(SapXferCallback pTrashCallback);
Remarks
Sets the application callback function for trash buffer transfer events. If you do not call SetTrashCallbackInfo,
trash buffers use the same callback function as regular buffers. The associated context information remains
the same as for regular buffers.
If you set the value of this attribute to NULL, then the application will receive no trash buffer callbacks.
You can only call SetTrashCallbackInfo before the Create method. See the SapTransfer constructor for more
details.

SapTransfer::Snap
BOOL Snap(int count = 1);
Parameters
count Number of frames to be transferred
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Transfers a finite number of frames (usually 1) from the source node to the destination node of all transfer
pairs in the current SapTransfer object.
By default, transfers are started asynchronously. You may need to call the Wait method immediately after
Snap to ensure correct synchronization. See the SetStartMode method if you need to use a different
synchronization mode for single frame transfers (count = 1).
If you call the Select method before Snap, then the transfer will be performed using the new current source
and destination resource indexes. Otherwise, the transfer will proceed using the indexes from the end of the
previous transfer operation (using Snap or Grab). If there is no previous transfer, then appropriate defaults

208 • Basic Class Reference Sapera LT ++ Programmer's Manual

from the call to the Create method will be used.
When using this function together with SapXferPair::SetFramesPerCallback, the value of count should be a
multiple of the number of frames per callback, otherwise, the application behavior is undefined. Typically, the
application callback function will not get invoked for any leftover frames. For example, if you acquire 10
frames and the number of frames per callback is 4, then you may not get the application callback for the last
two frames.
There is a special case when both the source and destination nodes are SapBuffer objects. First, only one
transfer pair is used. Also, the data transfer is actually a buffer to buffer copy operation, with format
conversion if necessary. Finally, the start mode is ignored.
Demo/Example Usage
Color Conversion Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo,
GigE Sequential Grab Demo, Grab Demo, Sequential Grab Demo, GigE Auto-White Balance Example

SapTransfer::UnregisterCallback
BOOL UnregisterCallback();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Unregisters a callback function on the transfer event.
Demo/Example Usage

SapTransfer::Wait
BOOL Wait(int timeout);
Return Value
Returns TRUE if successful, FALSE otherwise
Parameters
timeout Maximum amount of time to wait, in milliseconds
Remarks
Waits for the complete termination of data transfer. You may want to call Wait after Snap to make certain that
the required number of frames have been transferred before proceeding. You should definitely call Wait after
initiating continuous transfer with Grab and ending it with Freeze.
If the specified timeout expires, and transfer is still not completed, then Wait returns an error. A common
reason for this error is some kind of hardware failure. In this case, call the Abort method to unconditionally
terminate the transfer.
You may also get an error if the timeout is too small, and does not give the transfer enough time to terminate
gracefully. So you should always specify a value large enough to allow one full frame to be transferred. You
may even specify a much larger value (like a few seconds), if your application allows it.
Demo/Example Usage
GigE Auto-White Balance Example, GigE Camera LUT Example, Grab CameraLink Example, Grab Console
Example, Grab LUT Example

Sapera LT ++ Programmer's Manual Basic Class Reference • 209

Specialized Transfer Classes

The Specialized Transfer Classes are a set of classes derived from SapTransfer that allow you to more easily create
the most commonly used transfer configurations.

All the classes have the same naming convention, that is, SapXxxToYyy, where Xxx and Yyy identify the source and
destination nodes, respectively. For example, use the SapAcqToBuf Class to connect a SapAcquisition object to a
SapBuffer object.

Each of these classes has one or more specific constructors; otherwise, they use the same methods as the
SapTransfer class.

If you need a transfer configuration that is not supported by any of the specialized classes, then you must use the
SapTransfer class directly instead.

#include <SapClassBasic.h>

Common Constructor Arguments
All specialized transfer classes constructors include the following two arguments:
 pCallback Application callback function to be called each time a transfer event happens. The callback

function must be declared as:
void MyCallback(SapXferCallbackInfo *pInfo);

 pContext Optional pointer to an application context to be passed to the callback function. If
pCallback is NULL, this parameter is ignored.

SapAcqToBuf Class
SapAcqToBuf(SapAcquisition* pAcq, SapBuffer* pBuf, SapXferCallback pCallback = NULL,
void* pContext = NULL);
Parameters
pAcq Source acquisition object
pBuf Destination buffer object
Remarks
Implements a transfer from an acquisition object to a buffer object
Demo/Example Usage
Color Conversion Demo, Dual Acquisition Demo, FlatField Demo, Grab Demo, Sequential Grab Demo, Grab
CameraLink Example, Grab Console Example, Grab LUT Example, Grab MFC Example

SapAcqDeviceToBuf Class
SapAcqDeviceToBuf(SapAcqDevice* pAcqDevice, SapBuffer* pBuf, SapXferCallback pCallback = NULL,
void* pContext = NULL);
Parameters
pAcqDevice Source acquisition device object
pBuf Destination buffer object
Remarks
Implements a transfer from an acquisition device object (for example, for a Genie camera) to a buffer object
Demo/Example Usage

210 • Basic Class Reference Sapera LT ++ Programmer's Manual

GigE Camera Demo, GigE FlatField Demo, GigE Sequential Grab Demo, GigE Auto-White Balance Example,
GigE Camera LUT Example, Grab Console Example

SapMultiAcqToBuf Class
SapMultiAcqToBuf(SapAcquisition* pAcq[], SapBuffer* pBuf[], int numPairs,
SapXferCallback pCallback = NULL, void* pContext = NULL);
Parameters
pAcq List of source acquisition objects
pBuf List of destination buffer object
numPairs Number of entries in acquisition and buffer lists
Remarks
Implements a transfer from a series of acquisition objects to a matching number of buffer objects. There is a
one-to-one relationship between items in the source list and items in the destination list.All acquisition objects
must be located on the same server, that is, comparing their SapLocation attributes using the
SapManager::IsSameServer method returns TRUE.
Demo/Example Usage
Not available

Sapera LT ++ Programmer's Manual Basic Class Reference • 211

SapView

The SapView Class includes the functionality to display the resources of a SapBuffer object in a window. It allows you
to display the current buffer resource, a specific one, or the next one not yet displayed.

An internal thread optimizes buffer display in realtime. This allows the main application thread to execute without any
concerns for the display task.

An auto empty mechanism allows synchronization between SapView and SapTransfer objects to show buffers in real-
time without missing any data.

#include <SapClassBasic.h>

SapView Class Members
Construction
SapView Class constructor
Create Allocates the low-level Sapera resources
Destroy Releases the low-level Sapera resources
Attributes
GetBufferr Gets/sets the SapBuffer object with the buffer resources to display
SetBuffer
GetDisplay Gets/sets the SapDisplay object with the display device associated with the view
SetDisplay
GetWindow Gets/sets the GDI window handle used for showing buffers
SetWindow
SetCallbackInfo Sets the application callback method to call after displaying each buffer and the

associated context
GetCallback Gets the current application callback method
GetContext Gets the application context associated with the application callback method
GetWidth Gets the width (in pixels) of the displayed buffer area
GetHeight Gets the height (in lines) of the displayed buffer area
GetViewArea Gets the width and height of the viewing area
GetScrollPos Gets the current scrolling position of the viewing area relative to buffer coordinates
GetScrollRange Gets the scrolling range of the viewing area relative to buffer coordinates
GetIndex Gets the index of the last displayed buffer
IsAutoEmpty Gets/sets the auto-empty mechanism
SetAutoEmpty
GetOverlayMode Gets/sets the viewing mode when dealing with buffers of overlay type
SetOverlayMode
GetKeyColor Gets/sets the keying color for buffers of overlay type
SetKeyColor
GetScalingMode Gets/sets the mode specifying how buffer content is scaled to the viewing area
SetScalingMode
GetImmediateMode Gets/sets the view thread bypass mode
SetImmediateMode
GetWindowTitle Gets/sets the title of view windows automatically created by SapView

212 • Basic Class Reference Sapera LT ++ Programmer's Manual

SetWindowTitle
HasRange Checks if the view resource can show a subrange of buffer data bits
GetRangeMinMax Gets the minimum and maximum viewing range values
GetRange Gets/sets the viewing range value
SetRange
GetThreadPriority Gets/sets the execution priority of the viewing thread
SetThreadPriority
GetHandle Gets the low-level Sapera handle of the view resource
Operations
Init Initializes the view index
Show Shows the next buffer or a specific one, possibly skipping buffers in the process
ShowNext Shows the next buffer, without skipping any buffers in the process
Hide Hides the currently displayed buffer
GetDC Gets the Windows Device Context corresponding to the view window
ReleaseDC Releases the Windows Device Context corresponding to the view window
GetLut Gets the current view lookup table
ApplyLut Programs a new view lookup table
OnPaint Shows the last displayed buffer again following a WM_PAINT message
OnMove Adjusts the position of the viewing window following a WM_MOVE message
OnSize Adjusts the size of the viewing window following a WM_SIZE message
OnHScroll Adjusts the horizontal scrolling position following a WM_HSCROLL message
OnVScroll Adjusts the vertical scrolling position following a WM_VSCROLL message
IsCapabilityValid Checks for the availability of a low-level Sapera C library capability
IsParameterValid Checks for the availability of a low-level Sapera C library parameter
GetCapability Gets the value of a low-level Sapera C library capability
GetParameterr Gets/sets the value of a low-level Sapera C library parameter
SetParameter

SapView Member Functions
The following are members of the SapView Class.

SapView::SapView
SapView(
 SapBuffer* pBuffer = NULL,
 HWND hWnd = SapHwndDesktop,
 SapViewCallback pCallback = NULL,
 void* pContext = NULL
);SapView(
 SapDisplay* pDisplay,
 SapBuffer* pBuffer,
 HWND hWnd = SapHwndDesktop,
 SapViewCallback pCallback = NULL,
 void* pContext = NULL
);
Parameters
pBuffer SapBuffer object with the buffer resources to display
HWnd GDI window handle used for displaying buffers
pCallback Application callback function to be called after each buffer has been displayed. The callback

function must be declared as:
void MyCallback(SapViewCallbackInfo* pInfo);

Sapera LT ++ Programmer's Manual Basic Class Reference • 213

pContext Optional pointer to an application context to be passed to the callback function. If pCallback is
NULL, this parameter is ignored.

pDisplay Display object specifying on which display resource the buffers will be shown
Remarks
The SapView constructor does not actually create the low-level Sapera resources. To do this, you must call the
Create method.In addition to a regular window handle, you may use two special values for the hWnd
argument. If it is equal to SapHwndDesktop, then buffers will be displayed directly on the desktop. If it is
equal to SapHwndAutomatic, then SapView will automatically create a view window (supported on single
monitor configurations only). The latter is especially useful in console applications, where you do not have a
full GUI at your disposal.
You may specify the pCallback and pContext arguments in order to be notified each time a new buffer is
displayed following to a call to the Show, ShowNext, or OnPaint methods. This may be useful if you need to
draw graphics in non-destructive overlay.If you do not specify the pDisplay argument, then SapView
automatically creates and uses an internal SapDisplay object corresponding to the system display. You must
explicitly specify this argument if you use additional SapView objects which are located on displays other than
the system display.Another reason to specify the pDisplay argument is to speed up creation of the display
object, and to eliminate possible related flicker effects. See SapDisplay::GetFormatDetection,
SapDisplay::SetFormatDetection methods for details.
Demo/Example Usage
Color Conversion Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo,
GigE Sequential Grab Demo, Grab Demo, Sequential Grab Demo, Color Split Example, File Load Console, File
Load MFC Example, GigE Auto-White Balance Example, GigE Camera LUT Example, Grab CameraLink Example,
Grab Console Example, Grab LUT Example, Grab MFC Example

SapView::ApplyLut
BOOL ApplyLut();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Reprograms the view lookup table. After getting the current LUT using the GetLut method, use the methods in
the SapLut Class to manipulate it. Then use ApplyLut to apply the changes.
This feature is currently available only when the SapDisplay object associated with the view is not located on
the primary VGA in the system (see SapDisplay::IsPrimaryVGABoard).
Demo/Example Usage
Not available

SapView::Create
BOOL Create();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Creates all the low-level Sapera resources needed by the view object. Always call this method after
SapBuffer::Create.
If you manage the SapDisplay object needed by the view object yourself, you must also call this method after
SapDisplay::Create. See the SapView constructor for more details.
Demo/Example Usage
Color Conversion Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo,
GigE Sequential Grab Demo, Grab Demo, Sequential Grab Demo, Color Split Example, File Load Console, File
Load MFC Example, GigE Auto-White Balance Example, GigE Camera LUT Example, Grab CameraLink Example,
Grab Console Example, Grab LUT Example, Grab MFC Example

SapView::Destroy
BOOL Destroy();
Return Value
Returns TRUE if successful, FALSE otherwise

214 • Basic Class Reference Sapera LT ++ Programmer's Manual

Remarks
Destroys all the low-level Sapera resources needed by the view object. Always call this method before
SapBuffer::Destroy.
If you manage the SapDisplay object needed by the view object yourself, you must also call this method
before SapDisplay::Destroy. See the SapView constructor for more details.
Demo/Example Usage
Color Conversion Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo,
GigE Sequential Grab Demo, Grab Demo, Sequential Grab Demo, Color Split Example, File Load Console, File
Load MFC Example, GigE Auto-White Balance Example, GigE Camera LUT Example, Grab CameraLink Example,
Grab Console Example, Grab LUT Example, Grab MFC Example

SapView::GetBuffer, SapView::SetBuffer
SapBuffer* GetBuffer();
BOOL SetBuffer(SapBuffer* pBuffer);
Parameters
pBuffer SapBuffer object containing the buffer resources to display
Remarks
Gets/sets the SapBuffer object with the buffer resources to display. You set the initial value for this attribute
through the SapView constructor.
You can only call SetBuffer before the Create method.
Demo/Example Usage
Color Conversion Demo, Color Split Example

SapView::GetCallback
SapViewCallback GetCallback();
Remarks
Gets the current application callback method called after displaying each buffer. The initial value for this
attribute is NULL, unless you specify another value in the constructor.
See the SapView constructor for more details.
Demo/Example Usage
Not available

SapView::GetCapability
BOOL GetCapability(int cap, void* pValue);
Parameters
cap Low-level Sapera C library capability to read
pValue Pointer to capability value to read back
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
This method allows direct read access to low-level Sapera C library capabilities for the View Module. It needs a
pointer to a memory area large enough to receive the capability value, which is usually a 32-bit integer.
You will rarely need to use GetCapability. The SapView Class already uses important capabilities internally for
self-configuration and validation.
See the Sapera LT Basic Modules Reference Manual for a description of all capabilities and their possible
values.
Demo/Example Usage
Not available

SapView::GetContext
void* GetContext();

Sapera LT ++ Programmer's Manual Basic Class Reference • 215

Remarks
Gets the application context associated with the application callback method. The initial value for this attribute
is NULL, unless you specify another value in the constructor.
See the SapView constructor for more details.
Demo/Example Usage
Not available

SapView::GetDC
BOOL GetDC(HDC* pDC);
Parameters
pDC Pointer to display context value
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Gets the Windows Device Context corresponding to the current view area.
If the current SapView object does not use the system display (see SapDisplay::GetType), then GetDC returns
the Windows Device Context corresponding to the entire display instead.
Demo/Example Usage
Not available

SapView::GetDisplay, SapView::SetDisplay
SapDisplay* GetDisplay();
BOOL SetDisplay(SapDisplay* pDisplay);
Parameters
pDisplay SapDisplay object specifying where the buffer resources are shown
Remarks
Gets/sets the SapDisplay object specifying where the buffer resources are shown.
If you explicitly specify a SapDisplay object in the SapView constructor or through SetDisplay, then GetDisplay
returns that object. If you do not, then SapView automatically creates an internal SapDisplay object when
calling the Create method, and destroys it when calling the Destroy method. In this case, GetDisplay returns
the internal object.
You can only call SetDisplay before the Create method.
Demo/Example Usage
Color Conversion Demo, FlatField Demo, GigE Camera Demo, GigE Sequential Grab Demo, Grab Demo,
Sequential Grab Demo

SapView::GetHandle
CORHANDLE GetHandle();
Remarks
Gets the low-level Sapera handle of the view resource, which you may then use from the low-level Sapera
functionality. The handle is only valid after you call the Create method.
See the Sapera LT Basic Modules Reference Manual for details on low-level Sapera functionality.
Demo/Example Usage
Not available

SapView::GetHeight
int GetHeight();
Remarks
Gets the height (in lines) of the displayed buffer area. This value is equal to the minimum of the buffer height
and the viewing area height width.
The value returned by GetHeight is only relevant after calling the Create method.

216 • Basic Class Reference Sapera LT ++ Programmer's Manual

Demo/Example Usage
Not available

SapView::GetImmediateMode, SapView::SetImmediateMode
BOOL GetImmediateMode();
void SetImmediateMode (BOOL immediateMode);
Remarks
Gets/sets the view thread bypass mode.
By default, this mode is off, therefore calling the Show and ShowNext methods wake up an internal thread to
handle buffer display. Since showing images is often a time-consuming process, this allows the calling thread
to do other things instead.
If immediate mode is active, then the Show and ShowNext methods bypass the thread, and images are shown
in the context of the calling thread instead.
The initial value for this attribute is FALSE.
Demo/Example Usage
Not available

SapView::GetIndex
int GetIndex();
Remarks
Gets the index of the last displayed buffer. It is initialized to the current buffer index (usually 0) when you call
the Create method. From then on, it is automatically updated following calls to the Show or ShowNext
methods.
Demo/Example Usage
Not available

SapView::GetKeyColor, SapView::SetKeyColor
SapDataRGB GetKeyColor();
BOOL SetKeyColor(SapDataRGB keyColor);
Remarks
Gets/sets the keying color when dealing with buffers of overlay type (SapBuffer::TypeOverlay). See the
SapDataRGB class for a description of the related data type.
For an 8-bit display mode, that is, when the SapDisplay::GetPixelDepth method returns 8, then only the red
color component is relevant.
The initial value for this attribute corresponds to black. When calling the Create method, if the current viewing
mode is overlay, then its value will be initialized using the current low level keying color value.
You can only call SetKeyColor after the Create method.
Demo/Example Usage
Not available

SapView::GetLut
SapLut* GetLut();
Remarks
Gets the current view lookup table, which has already been automatically created and initialized when calling
the Create method. You may manipulate the LUT through the methods in the SapLut Class, and reprogram it
using the ApplyLut method.
GetLut returns NULL if the current view resource does not support lookup tables.
This feature is currently available only when the SapDisplay object associated with the view is not located on
the primary VGA in the system (see SapDisplay::IsPrimaryVGABoard).
Demo/Example Usage
Not available

Sapera LT ++ Programmer's Manual Basic Class Reference • 217

SapView::GetOverlayMode, SapView::SetOverlayMode
SapView::OverlayMode GetOverlayMode();
BOOL SetOverlayMode(SapView::OverlayMode overlayMode);
Parameters
overlayMode Viewing mode for buffers of overlay type, can be one of the following values:
 SapView::

OverlayNone
Overlay mode is not initialized yet

 SapView::
OverlayAlwaysOnTop

No color keying scheme is enabled. Buffer contents are displayed
directly using the display adapter overlay hardware. This is the
fastest method; however, other windows will not be displayed
correctly if they overlap the Sapera application.

 SapView::
OverlayAutoKeying

A destination color keying scheme is enabled. Source buffer pixels
are displayed only if the corresponding pixel on the display has the
key color. Each time a buffer is shown following calls to the Show
or ShowNext methods, the current keying color is painted on the
view surface. Also, the OnPaint method only repaints the keying
color on the part of the view area that becomes visible again. This
is usually the default mode.

 SapView::
OverlayManualKeying

Similar to auto-keying mode, except that you are responsible for
painting the key color in the view area. This gives you more
flexibility as to where the overlay image should be displayed.

Remarks
Gets/sets the viewing mode when dealing with buffers of overlay type (SapBuffer::TypeOverlay).
The initial value for this attribute is OverlayNone. If you do not call SetOverlayMode before the Create method,
then the latter will initialize its value appropriately.
Demo/Example Usage
Not available

SapView::GetParameter, SapView::SetParameter
BOOL GetParameter(int param, void* pValue);
BOOL SetParameter(int param, int value);
BOOL SetParameter(int param, void* pValue);
Parameters
param Low-level Sapera C library parameter to read or write
pValue Pointer to parameter value to read back or to write
value New parameter value to write
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
These methods allow direct read/write access to low-level Sapera C library parameters for the View Module.
The GetParameter method needs a pointer to a memory area large enough to receive the parameter value,
which is usually a 32-bit integer. The first form of SetParameter accepts a 32-bit value for the new value. The
second form takes a pointer to the new value, and is required when the parameter uses more than 32-bits of
storage.
Note that you will rarely need to use these methods. You should first make certain that what you need is not
already supported through the SapView Class. Also, directly setting parameter values may interfere with the
correct operation of the class.
See the Sapera LT Basic Modules Reference Manual for a description of all parameters and their possible
values.
Demo/Example Usage
Not available

SapView::GetRange, SapView::SetRange
int GetRange();

218 • Basic Class Reference Sapera LT ++ Programmer's Manual

BOOL SetRange(int range);
Remarks
Gets/sets the viewing range value. Before using GetRange and SetRange, you should first check for availability
of this feature using the HasRange and GetRangeMinMax methods.
The range value is the number of bits (starting from the most significant) that are not shown on the display.
The default value is 0, that is, the most significant bits are shown. This is a problem when not all bits are used,
for example, 10-bit data stored in the low-order bits of a 16-bit buffer. In this case, you should set the value
to 6 for correct results.
You can only call GetRange and SetRange after the Create method.
Demo/Example Usage
Not available

SapView::GetRangeMinMax
void GetRangeMinMax(int* pRangeMin, int* pRangeMax);
Parameters
pRangeMin Pointer to returned minimum range value
pRangeMax Pointer to returned maximum range value
Remarks
Gets the minimum and maximum viewing range values allowed for the SetRange method. If both values are 0,
then you cannot change the range.
You can only call GetRangeMinMax after the Create method.
Demo/Example Usage
Not available

SapView::GetScalingMode, SapView::SetScalingMode
SapView::ScalingMode GetScalingMode();
BOOL SetScalingMode(SapView::ScalingMode scalingMode, BOOL keepAspectRatio = FALSE);
BOOL SetScalingMode(float zoomHorz, float zoomVert);
BOOL SetScalingMode(SapViewScaleParams &srcParams, SapViewScaleParams &dstParams);
Parameters
scalingMode SapView::

ScalingNone
There is a one-to-one correspondence between buffer data and
pixels shown in the view area. This is the default mode.

 SapView::
ScalingFitToWindow

Displayed buffer contents are scaled so that they are shown
completely in the view area. This results in distorted images if
the width/height aspect ratio of the buffer is different from the
aspect ratio of the view area.

 SapView::
ScalingZoom

Displayed buffer contents are scaled independently in the
horizontal and vertical directions

 SapView::
ScalingUserDefined

Buffer contents are displayed using custom user-specified
settings

keepAspectRatio Set to TRUE to keep the image aspect ratio when using ScalingFitToWindow mode
zoomHorz Horizontal zooming factor to apply to displayed buffer contents
zoomVert Vertical zooming factor to apply to displayed buffer contents
srcParams Buffer area to be shown in the specified region of the viewing area
dstParams Region of the viewing area that will show the specified buffer area
Remarks
Gets/sets the mode specifying how buffer content is scaled to the viewing area.
The first form of this method allows you to specify one of two predefined modes: a one-to-one relationship
between buffer contents and the view area (ScalingNone), or displaying buffer contents completely
(ScalingFitToWindow).
The second form allows you to specify independent horizontal and vertical scaling factors (ScalingZoom).
These apply to displayed images only, they do not affect buffer data. This results in distorted images if the
factors are different.

Sapera LT ++ Programmer's Manual Basic Class Reference • 219

The third form gives you complete control over the scaling mode (ScalingUserDefined). You need to specify the
exact region in the source buffer and in the destination view area. SapView then automatically calculates the
appropriate horizontal and vertical scaling factors.
The srcParams and dstParams arguments both define rectangular areas, as follows:
SapViewScaleParams(int left, int top, int width, int height)
The initial value for this attribute is ScalingNone.
Demo/Example Usage
Dual Acquisition Demo

SapView::GetScrollPos
POINT GetScrollPos();
Remarks
Gets the current scrolling position (as a Windows POINT structure) of the viewing area relative to buffer
coordinates. The initial value is (0,0) and changes automatically through calls to the OnHScroll and OnVScroll
methods. The maximum value depends on the scrolling range (see SapView::GetScrollRange).
Depending on the current view scaling mode, the scrolling position remains fixed at (0,0) if the buffer contents
fit entirely within the view area.
The value returned by GetScrollPos is only relevant after calling the Create method.
See the SetScalingMode method for details.
Demo/Example Usage
Dual Acquisition Demo

SapView::GetScrollRange
SIZE GetScrollRange();
Remarks
Gets the scrolling range (as a Windows SIZE structure) of the viewing area relative to buffer coordinates. This
range determines the maximum value of the scrolling position.
Depending on the current view scaling mode, the scrolling range is initialized from the number of lines and
columns of the view buffer that cannot be shown in the view area. If its value is (0,0), then scrolling is
disabled.
The value returned by this method is only relevant after calling the Create method.
See the SetScalingMode method for details.
Demo/Example Usage
Dual Acquisition Demo

SapView::GetThreadPriority, SapView::SetThreadPriority
int GetThreadPriority();
void SetThreadPriority(int priority);
Remarks
Gets/sets the execution priority of the view thread. The initial value for this attribute is normal priority, unless
you construct this object using an existing SapView object.
For a detailed description of this setting, refer to the SetThreadPriority function in the Win32 documentation.
Demo/Example Usage
Dual Acquisition Demo

SapView::GetViewArea
BOOL GetViewArea(int* width, int* height);
Remarks
Gets the width and height of the viewing area. The value returned by this method is only relevant after calling
the Create method.
See also the GetWidth and GetHeight methods.
Demo/Example Usage

220 • Basic Class Reference Sapera LT ++ Programmer's Manual

Dual Acquisition Demo

SapView::GetWidth
int GetWidth();
Remarks
Gets the width (in pixels) of the displayed buffer area. This value is equal to the minimum of the buffer width
and the viewing area width.
The value returned by GetWidth is only relevant after calling the Create method.
Demo/Example Usage
Dual Acquisition Demo

SapView::GetWindow, SapView::SetWindow
HWND GetWindow();
BOOL SetWindow(HWND hWnd);
Parameters
hWnd GDI window handle used for displaying buffers
Remarks
Gets/sets the GDI window handle used for displaying buffers.
In addition to a regular window handle, you may use two special values. If hWnd is equal to SapHwndDesktop,
then buffers will be displayed directly on the desktop. If it is equal to SapHwndAutomatic, then SapView will
automatically create a view window (supported on single monitor configurations only). The latter is especially
useful in console applications, where you do not have a full GUI at your disposal.
If you do not specify a value for this attribute in the SapView constructor, then it defaults to SapHwndDesktop.
You can only call SetWindow before the Create method.
Demo/Example Usage
Not available

SapView::GetWindowTitle, SapView::SetWindowTitle
BOOL GetWindowTitle(char* title);
void SetWindowTitle (const char* title);
Remarks
Gets/sets the title of view windows automatically created by SapView. This is the case when you specify hWnd
equal to SapHwndAutomatic in the SapView constructor, or if you use the SetWindow method to accomplish
the same goal.
When using GetWindowTitle, make certain that the destination string can hold at least 128 characters.
You can only call these methods after the Create method.
Demo/Example Usage
Not available

SapView::HasRange
BOOL HasRange();
Remarks
Checks if the view resource can show a subrange of buffer data bits. This is useful when the number of
significant bits is less than the number of bit per pixel for the buffer, for example, data coming from a 10-bit
camera stored in a 16-bit buffer.
Use the SetRange method to set the viewing range value.
You can only call this method after the Create method.
Demo/Example Usage
Not available

SapView::Hide

Sapera LT ++ Programmer's Manual Basic Class Reference • 221

void Hide();
Remarks
Hides the currently displayed buffer. This is only relevant when dealing with buffers of overlay type
(SapBuffer::TypeOverlay).
Demo/Example Usage
Not available

SapView::Init
void Init();
Remarks
Initializes the view index from the current buffer index. The Create method automatically performs this action.
This ensures correct synchronization between the view and buffer index. Therefore, you normally do not have
to call Init.
However, if you use the ShowNext method, but do not call it for every frame, then the view index will not be
synchronized with the buffer index. In such a case you must call Init explicitly to restore synchronization.
Demo/Example Usage
Not available

SapView::IsAutoEmpty, SapView::SetAutoEmpty
BOOL IsAutoEmpty();
void SetAutoEmpty(BOOL isAutoEmpty);
Remarks
Gets/sets the ‘auto-empty’ mechanism, used for synchronizing the transfer and view tasks in the application
program.
By default, the SapTransfer Class automatically calls SapBuffer::SetState(SapBuffer::StateEmpty) after an
image has been acquired into a buffer. This means that a new image could be acquired in the same buffer
before the view task can even show it. Although this is usually not a critical issue, there are cases in which you
need to avoid this.
In order to correctly synchronize the transfer and view tasks, you must first disable this behavior by calling
SapTransfer::SetAutoEmpty(FALSE). Then call SapView::SetAutoEmpty(TRUE) to enable it in this class
instead.
As a result, no images will be acquired in the current buffer as long as buffer contents have not been shown
following calls to the Show or ShowNext methods. The buffer state is then reset before the application callback
method, if any, is called.
The initial value for this attribute is FALSE, unless you construct this object using an existing SapView object.
Demo/Example Usage
Not available

SapView::IsCapabilityValid
BOOL IsCapabilityValid(int cap);
Parameters
cap Low-level Sapera C library capability to check
Return Value
Returns TRUE if the capability is supported, FALSE otherwise
Remarks
Checks for the availability of a low-level Sapera C library capability for the view module. Call this method
before GetCapability to avoid invalid or not available capability errors.
Note that this method is rarely needed. The SapView class already uses important capabilities internally for
self-configuration and validation.
See the Sapera LT Basic Modules Reference Manual for a description of all capabilities and their possible
values.
Demo/Example Usage
Not available

222 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapView::IsParameterValid
BOOL IsParameterValid(int param);
Parameters
param Low-level Sapera C library parameter to check
Return Value
Returns TRUE if the parameter is supported, FALSE otherwise
Remarks
Checks for the availability of a low-level Sapera C library parameter for the view module. Call this method
before GetParameter to avoid invalid or not available parameter errors.
Note that this method is rarely needed. The SapView class already uses important parameters internally for
self-configuration and validation.
See the Sapera LT Basic Modules Reference Manual for a description of all parameters and their possible
values.
Demo/Example Usage
Not available

SapView::OnHScroll
void OnHScroll(int hPosition);
Parameters
hPosition New horizontal scrolling position
Remarks
Call this method from your application WM_HSCROLL message handler to adjust the horizontal scrolling
position.
Demo/Example Usage
Not available

SapView::OnMove
void OnMove();
Remarks
Call this method from your application WM_MOVE message handler to adjust the position of the viewing
window.
Demo/Example Usage
Not available

SapView::OnPaint
void OnPaint();
Remarks
Call this method from your application WM_PAINT message handler to show the last displayed buffer again.
Demo/Example Usage
Not available

SapView::OnSize
void OnSize();
Remarks
Call this method from your application WM_SIZE message handler to adjust the size of the viewing window
Demo/Example Usage
File Load MFC

SapView::OnVScroll
void OnVScroll(int vPosition);

Sapera LT ++ Programmer's Manual Basic Class Reference • 223

Parameters
vPosition New vertical scrolling position
Remarks
Call this method from your application WM_VSCROLL message handler to adjusts the vertical scrolling
position.
Demo/Example Usage
Not available

SapView::ReleaseDC
BOOL ReleaseDC();
Return Value
Returns TRUE if successful, FALSE otherwise
Remarks
Releases the Windows Device Context corresponding to the current view area.
If the current SapView object does not use the system display (see SapDisplay::GetType), then this method
releases the Windows Device Context corresponding to the entire display instead.
Demo/Example Usage
Not available

SapView::SetCallbackInfo
BOOL SetCallbackInfo(SapViewCallback pCallback, void* pContext = NULL);
Remarks
Sets the application callback method to call after showing each buffer and the associated context.
You can only call SetCallbackInfo before the Create method. See the SapView constructor for more details.
Demo/Example Usage
Not available

SapView::Show
void Show();
void Show(int index);
Parameters
index Index of the buffer resource to show
Remarks
If the index is specified, the corresponding buffer in the SapBuffer object is shown through the internal view
thread. Otherwise, the current buffer is shown.
If the SapBuffer object has only one buffer resource, that is, if the SapBuffer::GetCount method returns 1,
then index is ignored, and is assumed to be 0.
If you want to display data acquired in realtime in a buffer through the SapTransfer Class, simply call the Show
method within the SapTransfer callback function in application code.
The SapView Class will then show as many frames as possible without slowing down the transfer process. This
means that some buffers will be skipped if the view task is too slow to keep up with the acquisition. If you
need all frames to be shown, call the ShowNext method instead.
For multiformat buffers (for example, SapFormatRGB888_MONO8 or RGB161616_MONO16) the
SapBuffer::SetPage function determines which part (RGB or Mono) of the buffer is displayed. There is no
noeed to call SapView::Destroy or Create when switching buffer pages.
Demo/Example Usage
Color Conversion Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo,
GigE Sequential Grab Demo, Sequential Grab Demo, Grab Demo, Color Split Example, File Load Console
Example, GigE Auto-White Balance, GigE Camera LUT Example, Grab CameraLink Example, Grab Console
Example, Grab Lut Example, Grab MFC Example

SapView::ShowNext

224 • Basic Class Reference Sapera LT ++ Programmer's Manual

void ShowNext();
Remarks
This method shows the next undisplayed buffer in the SapBuffer object through the internal view thread. If you
want to display data acquired in real-time into a buffer through the SapTransfer Class, simply call the
ShowNext method within the SapTransfer callback method.
The SapView Class will then show all the frames and possibly slow down the transfer process if needed. If the
view task is fast enough to keep-up with the incoming frames, ShowNext behaves exactly the same way as
Show. Otherwise, the transfer process must be slowed down to give the SapView object the chance to show
every frame.
If you want to show as many frames as possible without affecting the transfer process, use the Show method
instead.
Demo/Example Usage
Not available

Sapera LT ++ Programmer's Manual Basic Class Reference • 225

SapViewCallbackInfo
The SapViewCallbackInfo Class acts as a container for storing all arguments to the callback function for SapView.

#include <SapClassBasic.h>

SapViewCallbackInfo Class Members
Construction
SapViewCallbackInfo Class constructor
Attributes
GetView Gets the SapView object associated with the view callback function
GetContext Gets the application context associated with the SapView callback function

SapViewCallbackInfo Member Functions
The following are members of the SapViewCallbackInfo Class.

SapViewCallbackInfo::SapViewCallbackInfo
SapViewCallbackInfo(SapView* pView, void* context);
Parameters
pView SapView object that calls the callback function
context Pointer to the application context
Remarks
SapView objects create an instance of this class before each call to the application callback method, in order to
combine all function arguments into one container.
SapView uses this class when notifying the application that a buffer has been shown.
Demo/Example Usage
Color Conversion Demo

SapViewCallbackInfo::GetContext
void* GetContext();
Remarks
Gets the context information associated with the application callback function. See the SapView constructor for
more details.
Demo/Example Usage
Color Conversion Demo

SapViewCallbackInfo::GetView
SapView* GetView();
Remarks
Gets the SapView object associated with the view callback function. See the SapView constructor for more
details.
Demo/Example Usage
Not available

226 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapXferCallbackInfo
The SapXferCallbackInfo Class acts as a container for storing all arguments to the callback function for the
SapTransfer Class.

#include <SapClassBasic.h>

SapXferCallbackInfo Class Members
Construction
SapXferCallbackInfo Class constructor
Attributes
GetTransfer Gets the SapTransfer object associated with transfer events
GetContext Gets the application context associated with transfer events
GetCustomData Gets the data associated with a custom transfer event
GetCustomSize Gets the size of the custom data returned by GetCustomData
GetEventType Gets the transfer events that triggered the call to the application callback
GetEventCount Gets the current count of transfer events
GetEventInfo Gets the low-level Sapera handle of the event info resource
GetGenericParam0 Gets generic parameters supported by some events
GetGenericParam1
GetGenericParam2
GetGenericParam3
IsTrash Checks if the current transfer event is associated with a trash buffer
GetPairIndex Gets the index of the transfer pair associated with the current transfer event
GetAuxiliaryTimestamp Gets the auxiliary timestamp associated with transfer events.
GetHostTimestamp Gets the host timestamp associated with transfer events.

SapXferCallbackInfo Member Functions
The following are members of the SapXferCallbackInfo Class.

SapXferCallbackInfo::SapXferCallbackInfo
SapXferCallbackInfo(
 SapTransfer* pXfer,
 void* context,
 SapTransfer::EventType eventType,
 int eventCount,
 BOOL isTrash,
 int pairIndex
);
SapXferCallbackInfo(
 SapTransfer *pXfer,
 void *context,
 COREVENTINFO eventInfo,
 BOOL isTrash,
 int pairIndex)
Parameters
pXfer SapTransfer object that calls the callback function
context Pointer to the application context
eventType Combination of transfer events. See the SapXferPair::GetEventType method for a list of

possible values.
eventCount Current transfer event count
eventInfo Low-level Sapera handle of the event info resource

Sapera LT ++ Programmer's Manual Basic Class Reference • 227

isTrash TRUE if the current transfer event is associated with a trash buffer, FALSE otherwise
pairIndex Transfer pair index for the current transfer event
Remarks
SapTransfer objects create an instance of this class before each call to the transfer callback method in order to
combine all function arguments into one container.
The pContext argument takes the value specified in the SapTransfer Class constructor; eventType identifies
the combination of events that triggered the call to the callback function; and eventCount increments by one
at each call, starting at 1. The counter is reinitialized each time you call the SapTransfer::Snap or
SapTransfer::Grab method.
By default, the event count is associated with the destination node for the transfer. This usually corresponds to
a buffer object, and each buffer resource in the object gets its own count. The
SapXferPair::GetEventCountSource, SapXferPair::SetEventCountSource method allows the count to be
associated with the source node instead. Since this usually corresponds to an acquisition object, the count
then increases at every acquired frame.
The pairIndex argument identifies the transfer pair associated with the callback. isTrash is only relevant when
the destination node for this pair is a SapBufferWithTrash object.
Demo/Example Usage
Color Conversion Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo,
GigE Sequential Grab Demo, Grab Demo, Sequential Grab Demo, GigE Auto-White Balance Example, GigE
Camera LUT Example, Grab CameraLink Example, Grab Console Example, Grab LUT Example, Grab MFC
Example

SapXferCallbackInfo::GetAuxiliaryTimestamp
BOOL GetAuxiliaryTimestamp(UINT64 *auxTimestamp);
Parameters
auxTimestamp Address of a pointer to receive the auxiliary timestamp
Remarks
Gets the auxiliary timestamp associated with transfer events. Note that not all acquisition devices support this
timestamp. See the device User’s Manual for more information on the availability of this value.
Demo/Example Usage
Not available

SapXferCallbackInfo::GetContext
void* GetContext();
Remarks
Gets the application context associated with transfer events. See the SapTransfer constructor for more details.
Demo/Example Usage
Color Conversion Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo,
GigE Sequential Grab Demo, Grab Demo, Sequential Grab Demo, GigE Auto-White Balance Example, GigE
Camera LUT Example, Grab CameraLink Example, Grab Console Example, Grab LUT Example, Grab MFC
Example

SapXferCallbackInfo::GetCustomData
BOOL GetCustomData(void** customData);
Parameters
customData Address of a pointer to receive the address to the data buffer
Remarks
Gets the address of a buffer containing the data associated with a custom transfer event. You must not free
the buffer after you are finished using it.
This functionality is usually not supported, except for special versions of certain acquisition devices. See the
device User’s Manual for more information on availability.
Example
void MyCallback(SapXferCallbackInfo* pInfo)
{

228 • Basic Class Reference Sapera LT ++ Programmer's Manual

 // Retrieve the data buffer
 void* pCustomData;
 pInfo->GetCustomData(&pCustomData);

 // Use the data buffer
 //...
}
Demo/Example Usage
Not available

SapXferCallbackInfo::GetCustomSize
BOOL GetCustomSize(int* customSize);
Parameters
customSize Address of an integer to return the value
Remarks
Gets the size of the custom data returned by the GetCustomData method.
Demo/Example Usage
Not available

SapXferCallbackInfo::GetEventCount
int GetEventCount();
BOOL GetEventCount(int *eventCount);
Parameters
eventCount Pointer to the variable to hold the event count
Remarks
Gets the current count of transfer events. The initial value is 1 and increments after every call to the transfer
callback function. The counter is reinitialized each time you call the SapTransfer::Snap or SapTransfer::Grab
methods.
By default, the event count is associated with the destination node for the transfer. This usually corresponds to
a buffer object, and each buffer resource in the object gets its own count. The
SapXferPair::GetEventCountSource, SapXferPair::SetEventCountSource method allows the count to be
associated with the source node instead. Since this usually corresponds to an acquisition object, the count
then increases at every acquired frame.
Demo/Example Usage
GigE Camera Demo, GigE FlatField Demo, GigE Sequential Grab Demo, Grab Demo, Sequential Grab Demo,
GigE Auto-White Balance Example, GigE Camera LUT Example, Grab CameraLink Example, Grab Console
Example, Grab LUT Example, Grab MFC Example

SapXferCallbackInfo::GetEventInfo
COREVENTINFO GetEventInfo();
Remarks
Gets the low-level Sapera handle of the event info resource. You should not use this method unless you need a
handle to the low-level C API to access some functionality not exposed in the C++ API.
Demo/Example Usage
Not available

SapXferCallbackInfo::GetEventType
SapXferPair::EventType GetEventType();
BOOL GetEventType(SapXferPair::EventType *eventType);
Parameters
eventType Pointer to the integer variable to hold the event type
Remarks
Gets the combination of transfer events that triggered the call to the application callback. See the
SapXferPair::GetEventType method for the list of possible values.
Note that, when the event type is SapXferPair::EndOfLine or SapXferPair::EndOfNLines, the line number for

Sapera LT ++ Programmer's Manual Basic Class Reference • 229

which the transfer callback function is called is not returned through this function, the corresponding bits are
always set to 0.
Demo/Example Usage
Not available

SapXferCallbackInfo::GetGenericParam0
SapXferCallbackInfo::GetGenericParam1
SapXferCallbackInfo::GetGenericParam2
SapXferCallbackInfo::GetGenericParam3
BOOL GetGenericParam0(int* paramValue);
BOOL GetGenericParam1(int* paramValue);
BOOL GetGenericParam2(int* paramValue);
BOOL GetGenericParam3(int* paramValue);
Parameters
paramValue Address of an integer where the parameter value is written
Remarks
Gets any of the four generic parameters supported by some transfer events. You should use aliases instead
when they are available. See the acquisition device User’s Manual for a list of transfer events using generic
parameters.
Demo/Example Usage
Not available

SapXferCallbackInfo::GetHostTimestamp
BOOL GetHostTimestamp(UINT64 *hostTimestamp);
Parameters
hostTimestamp Address of a pointer to receive the host timestamp
Remarks
Gets the host timestamp associated with transfer events.
Under Windows, the value corresponding to the high-resolution performance counter is directly returned. Refer
to the QueryPerformanceCounter and QueryPerformanceFrequency functions in the Windows API
documentation for more details on how to convert this value to time units.
Note that not all acquisition devices support this timestamp. See the device User’s Manual for more
information on the availability of this value.
Demo/Example Usage
Not available

SapXferCallbackInfo::GetPairIndex
int GetPairIndex();
Remarks
Gets the index of the transfer pair associated with the current transfer event. Use this index together with the
SapTransfer::GetPair method to access the corresponding SapXferPair object.
Demo/Example Usage
Not available

SapXferCallbackInfo::GetTransfer
SapTransfer* GetTransfer();
Remarks
Gets the SapTransfer object associated with transfer events. See the SapTransfer constructor for more details.
Demo/Example Usage
Not available

SapXferCallbackInfo::IsTrash

230 • Basic Class Reference Sapera LT ++ Programmer's Manual

BOOL IsTrash();
Remarks
Checks if the current transfer event is associated with a trash buffer. This is only relevant when the destination
node for the current pair is a SapBufferWithTrash object.
Demo/Example Usage
Color Conversion Demo, Dual Acquisition Demo, FlatField Demo, GigE Camera Demo, GigE FlatField Demo,
GigE Sequential Grab Demo, Grab Demo

Sapera LT ++ Programmer's Manual Basic Class Reference • 231

SapXferNode

The SapXferNode Class implements functionality to manipulate a transfer node object. The SapXferPair Class uses two
of these objects to create a transfer pair. The SapTransfer Class then uses this pair to implement a transfer
configuration.

You should not instantiate SapXferNode objects directly. Rather, you will use one of its derived classes in your
applications. All the following classes are directly derived from SapXferNode: SapAcquisition, SapAcqDevice,
SapBuffer, SapBufferRoi, and SapBufferWithTrash.

#include <SapClassBasic.h>

SapXferNode Class Members
Construction
SapXferNode Class constructor
Attributes
GetLocation Gets/sets the location where the transfer node resource is located
SetLocation
GetSrcNode Gets/sets the source transfer node object used for compatibility of parameters with other

transfer node objects SetSrcNode
GetSrcPort Gets the source port number for this node
GetXferParams Gets/sets the transfer parameters structure used for compatibility of parameters with

other transfer node objects SetXferParams
GetHandle Gets the low-level Sapera handle of the transfer node resource
GetServer Gets the low-level Sapera handle of the server for the transfer node resource
GetXferNodeType Gets the type of the current SapXferNode derived object

SapXferNode Member Properties
The following properties are members of the SapXferNode Class.

SapXferNode::SapXferNode
SapXferNode(SapLocation loc);
SapXferNode(SapLocation loc, SapXferNode* pSrcNode);
SapXferNode(SapLocation loc, SapXferParams xferParams);

Parameters
loc SapLocation object specifying the server where the transfer node resource is located and the

index of the resource on this server
pSrcNode Existing SapXferNode object from which parameters for the current object will be extracted for

compatibility of transfer parameters.

232 • Basic Class Reference Sapera LT ++ Programmer's Manual

xferParams Transfer parameters structure used for compatibility of parameters with other transfer node
objects.

Remarks
You should not instantiate SapXferNode objects directly. Rather, use one of the derived classes in the
application. All the following classes are derived from SapXferNode: SapAcquisition, SapAcqDevice, SapBuffer,
SapBufferRoi, and SapBufferWithTrash.
Demo/Example Usage
Not available

SapXferNode::GetHandle
CORHANDLE GetHandle();
Remarks
Gets the low-level Sapera handle of the transfer node resource, which you may then use from the low-level
Sapera functionality. The exact type of handle depends on the current derived class. The handle is only valid
after you call the SapTransfer::Create method.
See the Sapera LT Basic Modules Reference Manual for details on low-level Sapera functionality.
Demo/Example Usage
Not available

SapXferNode::GetLocation, SapXferNode::SetLocation
SapLocation GetLocation();
BOOL SetLocation(SapLocation loc);
Remarks
Gets/sets the location where the transfer node resource is located. You can only call SetLocation before the
SapTransfer::Create method.
Demo/Example Usage
Not available

SapXferNode::GetServer
CORSERVER GetServer();
Remarks
Gets the low-level Sapera handle of the server on which the transfer node resource is located. You may then
use this handle from the low-level Sapera functionality. The handle is only valid after you call the
SapTransfer::Create method.
See the Sapera LT Basic Modules Reference Manual for details on low-level Sapera functionality.
Demo/Example Usage
Not available

SapXferNode::GetSrcNode, SapXferNode::SetSrcNode
SapXferNode* GetSrcNode();
BOOL SetSrcNode(SapXferNode* pSrcNode, int srcPort = 0);
Remarks
Gets/sets the source transfer node object used for compatibility of parameters with other transfer node
objects.
For SetSrcNode, the optional srcPort argument represents the source port number for the node, which applies
only to a SapCab or SapPixPro object (see the Sapera LT ++ Legacy Classes Reference Manual).
You can only call SetSrcNode before the SapTransfer::Create method.
Demo/Example Usage
Not available

SapXferNode::GetSrcPort
int GetSrcPort();

Sapera LT ++ Programmer's Manual Basic Class Reference • 233

Remarks
Gets the source port number for this node. This applies only to a SapCab or SapPixPro object (see the Sapera
LT ++ Legacy Classes Reference Manual).
Demo/Example Usage
Not available

SapXferNode::GetXferNodeType
SapXferNode::XferNodeType GetXferNodeType();
Remarks
Gets the type of the current SapXferNode derived object as one of the following values:
 SapXferNode::NodeTypeUnknown Unknown object type
 SapXferNode::NodeTypeAcqDevice Corresponds to a SapAcqDevice object
 SapXferNode::NodeTypeAcquisition Corresponds to a SapAcquisition object
 SapXferNode::NodeTypeBuffer Corresponds to a SapBuffer object
 SapXferNode::NodeTypeDsp Corresponds to a SapDsp object
Note that the following node types apply only to older products.: NodeTypeCab, NodeTypeDsp, and
NodeTypePixPro. See the Sapera LT ++ Legacy Classes Reference Manual for related classes.
Demo/Example Usage
Not available

SapXferNode::GetXferParams, SapXferNode::SetXferParams
SapXferParams GetXferParams(int portIndex = 0);
BOOL SetXferParams(SapXferParams xferParams, int portIndex = 0);
Remarks
Gets/sets the transfer parameters structure used for compatibility of parameters with other transfer node
objects. The optional portIndex argument represents the port number for the node, which applies only to a
SapCab or SapPixPro object (see the Sapera LT ++ Legacy Classes Reference Manual).
You can only call this function before the SapTransfer::Create method.
Demo/Example Usage
Not available

234 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapXferPair
The SapXferPair Class describes a pair of source and destination transfer nodes.

If your application uses the SapTransfer Class directly, then you must add transfer pairs yourself before calling the
SapTransfer::Create method. If your application uses one of the Specialized Transfer Classes instead, then the class
constructor adds all the pairs automatically.

#include <SapClassBasic.h>

SapXferPair Class Members
Construction
SapXferPair Class constructor
Attributes
GetSrc Gets the source node for this pair
GetSrcPort Gets the source node port number for this pair (CAB only)
GetSrcIndex Gets the source node resource index for this pair
GetDst Gets the destination node for this pair
GetDstPort Gets the destination node port number for this pair (CAB only)
IsRegCallback Checks if a callback method will be registered for this transfer pair
SetCallbackInfo Sets the application callback method for transfer events and the associated

context
SetTrashCallbackInfo Sets the application callback method for transfer events in the trash buffer

and the associated context
GetCallback Gets the current application callback function for transfer events
GetTrashCallback Gets the current application callback function for transfer events in the trash

buffer
GetContext Gets the application context associated with transfer events
GetTrashContext Gets the application context associated with transfer events in the trash buffer
GetEventType Gets/sets the combination of registered transfer event types
SetEventType
GetEventCountSource Gets/sets the location at which the count of transfer events increases
SetEventCountSource
GetCycleMode Gets/sets the buffer cycling mode when the destination node is a SapBuffer

object SetCycleMode
GetFlipMode Gets/sets the flipping (that is, mirroring) mode for transferred images
SetFlipMode
GetCounterStampTimeBase Gets/sets the base units used for counter stamps of destination buffers.
SetCounterStampTimeBase
GetFramesPerCallback Gets/sets the number of transferred frames that trigger a notification from the

acquisition device to user level code SetFramesPerCallback
GetFramesOnBoard Gets/sets the number of internal buffers to be used on a source acquisition

node SetFramesOnBoard

SapXferPair Member Functions
The following are members of the SapXferPair Class.

SapXferPair::SapXferPair
SapXferPair(
 SapXferNode* pSrc,

Sapera LT ++ Programmer's Manual Basic Class Reference • 235

 SapXferNode* pDst,
 BOOL regCallback = TRUE
);
SapXferPair(
 SapXferNode* pSrc,
 int srcPort,
 SapXferNode* pDst,
 int dstPort,
 BOOL regCallback = TRUE
);
Parameters
pSrc Source node for this pair
pDst Destination node for this pair
regCallback If TRUE, a callback method will be registered for this pair
srcPort Source node port number or resource index for this pair
dstPort Destination node port number for this pair
Remarks
The SapXferPair constructor defines a transfer pair as a combination of one source and one destination
node, both of which are objects derived from the SapXferNode Class. This means they can be objects of one
of the following classes: SapAcquisition, SapAcqDevice, SapBuffer, SapBufferRoi, and SapBufferWithTrash.
If regCallback is TRUE, then the SapTransfer object containing this pair automatically registers a callback
function when you call the SapTransfer::Create method. By default, the callback function and application
context specified in the SapTransfer::SapTransfer constructor are used. You may override these for a
specific pair by calling the SetCallbackInfo method in this class.
If regCallback is FALSE, then no callback function is registered. Use this option when you do not need
notification of transfer events for this pair.
The srcPort argument applies to two cases only. If the source node is a SapCab or SapPixPro object (see
the Sapera LT ++ Legacy Classes Reference Manual), then it identifies the source data port number. If the
source node is a SapBuffer object, then it identifies the source buffer resource index. In all other cases,
srcPort is ignored.
The dstPort argument applies only in one case. If the destination node is a SapCab or SapPixPro object, then
it identifies the destination data port number. In all other cases, dstPort is ignored.
Demo/Example Usage
Not available

SapXferPair::GetCallback, SapXferPair::GetTrashCallback
SapXferCallback GetCallback();
SapXferCallback GetTrashCallback();
Remarks
Gets the current application callback function for transfer events for the current pair. If NULL, then the callback
function specified in the associated SapTransfer object applies to the pair. You can also use GetTrashCallback
to retrieve the same information for the trash buffer (if any).
The initial value for this attribute is NULL.
Demo/Example Usage
Not available

SapXferPair::GetContext, SapXferPair::GetTrashContext
void* GetContext();
void* GetTrashContext();
Remarks
Gets the application context associated with transfer events for the current pair. If NULL, then the context
specified in the associated SapTransfer object applies to the pair. You can also use GetTrashContext to retrieve
the same information for the trash buffer (if any).
The initial value for this attribute is NULL.
Demo/Example Usage

236 • Basic Class Reference Sapera LT ++ Programmer's Manual

Not available

SapXferPair::GetCounterStampTimeBase, SapXferPair::SetCounterStampTimeBase
SapXferPair::CounterStampTimeBase GetCounterStampTimeBase();
BOOL SetCounterStampTimeBase (SapXferPair:: CounterStampTimeBase counterStampTimeBase);
Parameters
counterStampTimeBase Counter stamp units. Can be one of the following:
 SapXferPair::CounterStampMicroSec Microseconds
 SapXferPair::CounterStampMilliSec Milliseconds
 SapXferPair::CounterStampLine Line valid or horizontal sync signal
 SapXferPair::CounterStampLineTrigger External line trigger of shaft encoder

pulse
 SapXferPair::CounterStampFrame Frame valid or vertical sync signal
 SapXferPair::

CounterStampExtFrameTrigger
External frame trigger signal

 SapXferPair::CounterStampShaftEncoder Shaft encoder input (before drop or/and
multiply factors).

Remarks
Gets/sets the base units used for counter stamps of destination buffers. Individual values have no meaning by
themselves; however, subtracting counter stamp values for two buffer resources gives the amount of time (or
a number of signal occurrences) elapsed between a common reference point for their respective data
transfers.
See the SapTransfer::GetCounterStampInfo method to find out which common reference point is used for the
current transfer pair.
The initial value for this attribute is CounterStampMicroSec.
Depending on the current transfer device, you may be allowed to call SetCounterStampTimeBase at any time.
However, you should still call this method before calling SapTransfer::Create or SapTransfer::Connect if you
use SapTransfer::SetAutoConnect to turn off the auto-connect mechanism.
Note, for frame grabbers that support the acquisition timestamp (see SapAcquisition::IsTimeStampAvailable),
the acquisition timestamp is used; the timestamp base is set using the SapAcquistion::SetTimeStampBase
function.
Note also that this function is not available for Genie cameras; use the SapAcqDevice::GetFeatureValue and
SapAcqDevice::SetFeatureValue function with the ‘TimestampCounter’ feature.
Demo/Example Usage
Sequential Grab Demo

SapXferPair::GetCycleMode, SapXferPair::SetCycleMode
SapXferPair::CycleMode GetCycleMode();
BOOL SetCycleMode (SapXferPair::CycleMode cycleMode);
Parameters
cycleMode The available buffer cycling modes differ by the way in which they specify which buffer resource

gets the next data transfer.
The empty state refers to the case in which buffer data has been completely processed and may
be overwritten. It is set by application code as soon as it has finished processing buffer data.
The full state refers to the case in which buffer data has not been processed since its latest data
transfer. It is set by the transfer device as soon as a data transfer has completed.
The current buffer is the one in which the latest data transfer occurred.
The next buffer is the one immediately after the current buffer, with wraparound to the first
buffer at the end of the list.
The trash buffer is defined as the last buffer in the list for the WithTrash modes only. Its state is
always considered to be empty by the transfer device.
The cycling mode can be one of the following values:

 SapXferPair::CycleUnknown Unknown cycle mode.

Sapera LT ++ Programmer's Manual Basic Class Reference • 237

 SapXferPair::CycleAsynchronous Always transfer to the next buffer, regardless of its state.
 SapXferPair::CycleSynchronous The first transfer always occurs in the currently selected

buffer. From then on, if next buffer is empty, then transfer
to next buffer; otherwise, transfer to current buffer.

 SapXferPair::CycleWithTrash If next buffer is empty, then transfer to the next buffer;
otherwise, transfer to the trash buffer. Repeat transferring
to the trash buffer as long as the next buffer is full.

 SapXferPair::CycleOff Always transfer to the current buffer.
 SapXferPair::CycleNextEmpty If next buffer is empty, then transfer to next buffer;

otherwise, transfer to next empty buffer in the list. If all
buffers are full, then transfer to current buffer.

 SapXferPair::CycleNextWithTrash If next buffer is empty, then transfer to next buffer;
otherwise, transfer to next empty buffer in the list. If all
buffers are full, then transfer to trash buffer. Repeat
transferring to the trash buffer as long as there is no
empty buffer in the list.

Remarks
Gets/sets the buffer cycling mode when the destination node is a SapBuffer object.
The initial value for this attribute is CycleUnknown. This means that the associated SapTransfer Class uses a
CycleWithTrash cycle mode for a SapBufferWithTrash object; otherwise, it uses CycleAsynchronous. Call
SetCycleMode if you want to override this value for the current transfer pair.
Depending on the current transfer device, you may be allowed to call SetCycleMode at any time. However, you
should still call this method before calling SapTransfer::Create or SapTransfer::Connect if you use
SapTransfer::SetAutoConnect to turn off the auto-connect mechanism.
The current transfer device may not support all possible cycling modes. You can use the
SapTransfer::IsCycleModeAvailable method to check if the desired mode is supported.
Demo/Example Usage
GigE Camera Demo

SapXferPair::GetDst
SapXferNode* GetDst();
Remarks
Gets the destination node for this pair as an object derived from the SapXferNode Class. See the SapXferNode
constructor for a list of derived classes.
Demo/Example Usage
Not available

SapXferPair::GetDstPort
int GetDstPort();
Remarks
Gets the destination node port number for this pair. This applies only when the node is a SapCab or SapPixPro
object (see the Sapera LT ++ Legacy Classes Reference Manual).
Demo/Example Usage
Not available

SapXferPair::GetEventCountSource, SapXferPair::SetEventCountSource
SapXferPair::EventCountSource GetEventCountSource();
BOOL SetEventCountSource(SapXferPair::EventCountSource eventCountSource);
Parameters
eventCountSource Resource type where the transfer event count increases. Can be one of the following:
 SapXferPair::EventCountNone No event count available
 SapXferPair::EventCountDst Count is linked to the destination node
 SapXferPair::EventCountSrc Count is linked to the source node

238 • Basic Class Reference Sapera LT ++ Programmer's Manual

Remarks
Gets/sets the resource type at which the count of transfer events increases. The destination node normally
corresponds to a buffer object, so that each buffer resource in the object gets its own count. The source node
usually corresponds to an acquisition object, so that the count increases at every acquired frame.
The initial value for this attribute is EventCountSourceDst.
Depending on the current transfer device, you may be allowed to call SetEventCountSource at any time.
However, you should still call this method before calling SapTransfer::Create or SapTransfer::Connect if you
use SapTransfer::SetAutoConnect to turn off the auto-connect mechanism.
Demo/Example Usage
Not available

SapXferPair::GetEventType, SapXferPair::SetEventType
SapXferPair::EventType GetEventType();
BOOL SetEventType(SapXferPair::EventType eventType);
Parameters
eventType Transfer events for which the application callback function will be called. One or more of the

following values may be combined together using bitwise a OR operation:
 SapXferPair::EventNone No events
 SapXferPair::EventStartOfField Start of field (odd or even)
 SapXferPair::EventStartOfOdd Start of odd field
 SapXferPair::EventStartOfEven Start of even field
 SapXferPair::EventStartOfFrame Start of frame
 SapXferPair::EventEndOfField End of field (odd or even)
 SapXferPair::EventEndOfOdd End of odd field
 SapXferPair::EventEndOfEven End of even field
 SapXferPair::EventEndOfFrame End of frame
 SapXferPair::EventEndOfLine After a specific line number

eventType = SapXferPair::EventEndOfLine | lineNum
Note that lineNum only applies to SetEventType, its value
is not returned when calling GetEventType, the
corresponding bits are set to 0.

 SapXferPair::EventEndOfNLines After a specific number of lines (linescan cameras only)
eventType = SapXferPair::EventEndOfNLines | numLines
Note that numLines only applies to SetEventType, its
value is not returned when calling GetEventType, the
corresponding bits are set to 0.

 SapXferPair::EventEndOfTransfer End of transfer, that is, after all frames have been
transferred following calls to SapTransfer::Snap or
SapTransfer::Grab/SapTransfer::Freeze.

 SapXferPair::EventLineUnderrun The number of active pixels per line received from a video
source is less than it should be.

 SapXferPair::EventFieldUnderrun The number of active lines per field received from a video
source is less than it should be.

Remarks
The initial value for this attribute is EventEndOfFrame.
You can only call SetEventType before calling SapTransfer::Create or SapTransfer::Connect if you use the
SapTransfer::SetAutoConnect method to turn off the auto-connect mechanism.
Demo/Example Usage
Not available

 SapXferPair::GetFlipMode, SapXferPair::SetFlipMode
SapXferPair::FlipMode GetFlipMode();
BOOL SetFlipMode(SapXferPair::FlipMode flipMode);

Sapera LT ++ Programmer's Manual Basic Class Reference • 239

Parameters
flipMode SapXferPair::FlipNone No flipping
 SapXferPair::FlipHorizontal Transferred images are flipped horizontally
 SapXferPair::FlipVertical Transferred images are flipped vertically
Remarks
Gets/sets the flipping (that is, mirroring) mode for transferred images for the current transfer pair.
The initial value for this attribute is FlipNone.
Depending on the current transfer device, you may be allowed to call SetFlipMode at any time. However, you
should still call this method before calling SapTransfer::Create or SapTransfer::Connect if you use
SapTransfer::SetAutoConnect to turn off the auto-connect mechanism.
Demo/Example Usage
Not available

SapXferPair::GetFramesOnBoard, SapXferPair::SetFramesOnBoard
int GetFramesOnBoard();
BOOL SetFramesOnBoard(int numFrames);
Remarks
Gets/sets the number of internal buffers to be used on a source acquisition node.
The value returned by GetFramesOnBoard is only valid after calling the SapTransfer::Create function (or
SapTransfer::Connect if you use SapTransfer::SetAutoConnect to turn off the auto-connect mechanism). If
this value is equal to 0, it means that the acquisition hardware has no internal buffers.
Since the acquisition hardware usually has a default number of internal buffers which is appropriate in most
cases, there is usually no need to call SetFramesOnBoard. If you do, however, you should always use the
following sequence:
 SetFramesOnBoard(numFrames);

SapTransfer::Create();
newNumFrames = GetFramesOnBoard();

If the value returned by GetFramesOnBoard is less than the original numFrames, it means that there is not
enough internal memory for all the buffers, and it indicates the number of buffers which have in fact been
allocated.
Demo/Example Usage
Sequential Grab Demo

SapXferPair::GetFramesPerCallback, SapXferPair::SetFramesPerCallback
int GetFramesPerCallback();
BOOL SetFramesPerCallback(int numFrames);
Remarks
Gets/sets the number of transferred frames that trigger a notification from the acquisition device to user level
code.
This is particularly useful when the acquisition device has a high frame rate. In this case, the large amount of
communication between the device and the host can result in significant CPU overhead, which may negatively
affect performance. In this case, call the SetFramesPerCallback method with a value larger than 1 to reduce
this overhead.
It is important to note that the number of frames per callback is an internal optimization for the current
transfer pair in the SapTransfer class only, with the only noticeable effect being improved performance in
some cases. This means that the application callback function will still be called for every acquired frame.
The default value for this attribute is 1.
You can only call SetFramesPerCallback before calling the SapTransfer::Create method or
SapTransfer::Connect if you use SapTransfer::SetAutoConnect to turn off the auto-connect mechanism.
Demo/Example Usage
GigE Sequential Grab Demo, Sequential Grab Demo

SapXferPair::GetSrc

240 • Basic Class Reference Sapera LT ++ Programmer's Manual

SapXferNode* GetSrc();
Remarks
Gets the source node for this pair as an object derived from the SapXferPair Class. See the SapXferPair
constructor for a list of derived classes.
Demo/Example Usage
Not available

SapXferPair::GetSrcIndex
int GetSrcIndex();
Remarks
Gets the source node resource index for this pair. This applies only when the node is a SapBuffer object.
Demo/Example Usage
Not available

SapXferPair::GetSrcPort
int GetSrcPort();
Remarks
Gets the source node port number for this pair. This applies only when the source node is a SapCab or
SapPixPro object (see the Sapera LT ++ Legacy Classes Reference Manual).
Demo/Example Usage
Not available

SapXferPair::IsRegCallback
BOOL IsRegCallback();
Remarks
Returns TRUE if the SapTransfer object containing this pair automatically registers a callback function when
you call the SapTransfer::Create method, FALSE otherwise.
The default value for this attribute is TRUE, unless you specify otherwise in the SapXferPair constructor.
Demo/Example Usage
Not available

SapXferPair::SetCallbackInfo, SapXferPair::SetTrashCallbackInfo
BOOL SetCallbackInfo(SapXferCallback pCallback, void* pContext);
BOOL SetTrashCallbackInfo(SapXferCallback pCallback, void* pContext);
Remarks
Sets the application callback method for transfer events and the associated context for the current pair only.
This overrides any callback and context specified in the SapTransfer constructor. You can also use
SetTrashCallbackInfo if you need a different callback function for the trash buffer (if any).
You can only call SetCallbackInfo or SetTrashCallbackInfo before calling the SapTransfer::Create method or
SapTransfer::Connect if you use SapTransfer::SetAutoConnect to turn off the auto-connect mechanism.
See the SapTransfer constructor for more details.
Demo/Example Usage
Not available

Sapera LT ++ Programmer's Manual Basic Class Reference • 241

SapXferParams
The SapXferParams Class stores parameters needed by a transfer task managed by the SapTransfer Class.

When building a destination transfer node object, use the transfer parameters from the source node to ensure transfer
compatibility between the two. You may do this either by specifying the source SapXferNode object in the destination
node constructor, or by directly specifying the appropriate SapXferParams object.

#include <SapClassBasic.h>

SapXferParams Class Members
Construction
SapXferParams Class constructor
Attributes
GetFrameType, Gets/sets the field interlacing type in a frame
SetFrameType
GetFieldOrder, Gets/sets the field order for interlaced frames
SetFieldOrder
GetWidth, Gets/sets the width (in pixels) of one frame
SetWidth
GetHeight, Gets/sets the height (in lines) of one frame
SetHeight
GetFormat, Gets/sets the data format of the transferred data
SetFormat
GetPixelDepth, Gets/sets the number of significant bits of the transferred data
SetPixelDepth
GetPixelShift, Gets/sets the difference between the pixel depth and the number of bits in the data

format (obsolete) SetPixelShift
GetParameters, Gets/sets all the parameters in one operation
SetParameters

SapXferParams Member Functions
The following are members of the SapXferParams Class.

SapXferParams::SapXferParams
SapXferParams();
Remarks
The SapXferParams constructor initializes its members to default (but probably incorrect) values. Use the
other methods in this class to properly set these values.
Demo/Example Usage
Not available

SapXferParams::GetFieldOrder, SapXferParams::SetFieldOrder
SapXferParams::FieldOrder GetFieldOrder();
void SetFieldOrder(SapXferParams::FieldOrder fieldOrder);
Parameters
fieldOrder Field order can be one of the following values:
 SapXferParams::FieldOrderOddEven The odd field is transferred before the even field
 SapXferParams::FieldOrderEvenOdd The even field is transferred before the odd field

242 • Basic Class Reference Sapera LT ++ Programmer's Manual

 SapXferParams::FieldOrderNext The next field is transferred, whether it is odd or
even

Remarks
Gets/sets the field order for interlaced frames. Does not apply for progressive video.
Demo/Example Usage
Not available

SapXferParams::GetFormat, SapXferParams::SetFormat

SapFormat GetFormat();
void SetFormat(SapFormat format);
Remarks
Gets/sets the pixel format of the transferred data. See the SapBuffer::SapBuffer constructor for possible
values for format.
Demo/Example Usage
Dual Acquisition Demo

SapXferParams::GetFrameType, SapXferParams::SetFrameType
SapXferParams::FrameType GetFrameType();
void SetFrameType(SapXferParams::FrameType frameType);
Parameters
frameType Field interlacing can be one of the following values:
 SapXferParams::FrameInterlaced Video fields are interlaced
 SapXferParams::FrameProgressive Video fields are non-interlaced (progressive video)
Remarks
Gets/sets the field interlacing type in a frame.
Demo/Example Usage
Not available

SapXferParams::GetHeight, SapXferParams::SetHeight
int GetHeight();
void SetHeight(int height) ;
Remarks
Gets/sets the height (in lines) of one frame
Demo/Example Usage
Dual Acquisition Demo

SapXferParams::GetParameters, SapXferParams::SetParameters
void GetParameters(SapXferParams::FrameType* frameType, SapXferParams::FieldOrder* fieldOrder,
int* width, int* height, int* format, int* pixelDepth, int* pixelShift);
void SetParameters (SapXferParams::FrameType frameType, SapXferParams::FieldOrder fieldOrder,
int width, int height, int format, int pixelDepth, int pixelShift);
Remarks
Gets/sets all the parameters in one operation. See the GetFrameType and GetFieldOrder methods for possible
values for frameType and fieldOrder.
Demo/Example Usage
Not available

SapXferParams::GetPixelDepth, SapXferParams::SetPixelDepth
int GetPixelDepth();
void SetPixelDepth(int pixelDepth);
Remarks

Sapera LT ++ Programmer's Manual Basic Class Reference • 243

Gets/sets the number of significant bits of the transferred data. This value is extracted from SapAcquisition
objects to determine the number of bits containing actual data. The range of possible values is given by the
SapManager::GetPixelDepthMin, SapManager::GetPixelDepthMax methods.
Demo/Example Usage
Dual Acquisition Demo

SapXferParams::GetPixelShift, SapXferParams::SetPixelShift
int GetPixelShift();
void SetPixelShift(int pixelShift);
Remarks
Gets/sets the difference between the pixel depth and the number of bits in the data format for image display
purposes.
These methods are obsolete, since Sapera LT now automatically manages the image display pixel shift using
the buffer pixel depth.
Demo/Example Usage
Not available

SapXferParams::GetWidth, SapXferParams::SetWidth
int GetWidth();
void SetWidth(int width);
Remarks
Gets/sets the width (in pixels) of one frame
Demo/Example Usage
Dual Acquisition Demo

Sapera LT ++ Programmer's Manual Appendix A: Sapera LT and GenICam • 245

Appendix A: Sapera LT and
GenICam

What is GenICam?
GenICam™ is an international standard that allows a single application programming interface (API) to
control any compliant video source, regardless of its vendor, feature set, or interface technology (GigE
Vision®, Camera Link®, etc.).

GenICam consists of four modules:

• GenApi: This module defines the format of an XML file that captures the features of a device. GenApi
also specifies how to access and control the features. All GenICam-compliant devices must contain
an XML file that conforms to this format.

• Standard Features Naming Convention (SFNC): This module standardizes the names of more than
220 commonly used camera features. To comply with GigE Vision, seven of the features are
mandatory. The rest are either recommended or optional. Compliance with the naming convention
is important for interoperability, as it frees application software from the complexity of situations
where vendors call the same feature by different names, such as, 'Brightness' and 'Gain'.

• GenTL: This module defines a software interface for accessing image data from a generic transport
layer.

• CLProtocol: This module allows cameras that comply with the Camera Link® standard to be accessed
through GenApi. It defines the format of a dynamic-link library that converts a vendor-specific
serial protocol to a GenApi interface.

There are two levels of compliance to GenICam:

• GenICam-compliance: where a product either provides or interprets a compliant XML file.

• GenICam TL-compliance: where a product exposes a transport layer compatible with GenTL.

Currently, Teledyne DALSA offers several cameras with GenICam and GigEVision compliance.

Using Sapera LT with GenICam-compliant Devices
Sapera LT uses the SapAcqDevice and SapFeature classes to access the GenICam features of a device.

A SapAcqDevice object is created for each acquisition device and provides access to the list of features,
events and files that are supported on the device. SapAcqDevice also allows the registering and
unregistering of callback functions on an event.

Features
A SapFeature object can be accessed for each feature on the device and provides more detailed
information on the actual feature, such as its access mode, minimum and maximum values, enumerations,
and so forth, as well as information used for integrating feature access into graphical user interfaces, such
as the feature category.

Feature values can be read and written to using the SapAcqDevice::GetFeatureValue and
SapAcqDevice::SetFeatureValue functions. To get more information on a feature, retrieve the SapFeature

246 • Appendix A: Sapera LT and GenICam Sapera LT ++ Programmer's Manual

object for this specific feature using the SapAcqDevice::GetFeatureInfo function. See the Sapera LT ++ –
Modifying Camera Features and Sapera .NET – Modifying Camera Features sections in the Sapera LT
User’s Manual for more information and examples on how to access and modify features.

Selectors
A selector is a fundamental concept of GenICamSFNC; it allows using a single feature to control multiple
components of the same feature. For example the Gain feature might have three components: Red,
Green, and Blue. The SapFeature::IsSelector, SapFeature::GetSelectedFeatureCount,
SapFeature::GetSelectedFeatureName, SapFeature::GetSelectingFeatureIndex and corresponding
GetSelecting functions allow the user to query information about the selector.

File Transfer
Sapera LT simplifies the transfer of files to and from devices with the SapAcqDevice::GetFileCount and
SapAcqDevice::GetFileNameByIndex functions, which allow for the enumeration of the available device
files. The SapAcqDevice::WriteFile and SapAcqDevice::ReadFile functions are used to transfer the file in
and out of the device.

Notes on the Sapera LT GenICam Implementation
The following functions have GenICam specific notes about their implementation:

• SapAcqDevice::GetUpdateFeatureMode, SapAcqDevice::SetUpdateFeatureMode: only the
UpdateFeatureAuto mode is implemented. Therefore, the
SapAcqDevice::UpdateFeaturesFromDevice and SapAcqDevice::UpdateFeaturesToDevice
functions are not implemented.

• SapFeature::GetPollingTime: GenICam does not provide polling information to the user, therefore
this function always returns 0.

• SapFeature::IsSavedToConfigFile, SapFeature::SetSavedToConfigFile: The SapFeature class
provides functions to control which features are saved to the device configuration file. In
GenICam, this is hardcoded by the device manufacturer in the device description file. Therefore,
the SapFeature::IsSavedToConfigFile, SapFeature::SetSavedToConfigFile has no effect, and
returns False when the value is read.

• SapFeature class: the retrieval of feature enumeration properties is currently not implemented; only
the name and value can be retrieved.

Events
The SapAcqDevice object always provides two events; “FeatureInfoChanged” and “FeatureValueChanged”.
These events are related to feature state changes and not the device. Since GenICam does not give
information on what changed in the feature, only “FeatureInfoChanged” events are generated; the
“FeatureValueChanged” is never generated.

Type
GenAPI interface mapping to SapFeature types.

GenICam Interface Sapera Type
IInteger SapFeature::TypeInt64
IFloat SapFeature::TypeDouble
IString SapFeature::TypeString
IEnummeration SapFeature::TypeEnum
ICommand SapFeature::TypeBool (write only)
IBoolean SapFeature::TypeBool

Sapera LT ++ Programmer's Manual Appendix A: Sapera LT and GenICam • 247

IRegister SapFeature::TypeArray
ICategory Not exported; the category is a property of the feature.
ISelector The selector is a property of the feature regardless of its type.
IPort This is the interface to the underlying transport technologies; it is not

exported to the user.

You can retrieve the type of a feature using the SapFeature::GetType function. If the type returned is
TypeArray, reading /writing to this feature must use a SapBuffer or SapLut object.

Currently the ICommand is mapped to a SapFeature::TypeBool. Setting any value will execute that action
and return when the action is complete. One limitation of this mapping is that if the action takes more
than the Sapera timeout, setting the value might return false even if the action succeeded.

GigEVision in Sapera LT
The Sapera LT GigEVision implementation is based on the 1.0 specification, but supports devices up to the
1.2 specification with some limitations.

The SapAcqDevice module uses the device manifest table to choose which XML file to download from the
camera. Priority is given to the first GenICam device descriptions file using schema 1.1, otherwise schema
1.0 is used.

Channels
When a SapAcqDevice object is created, the control and messaging channels are in exclusive mode,
meaning that only the currently connected application can control the device. The first streaming channel
is opened when a SapTransfer object is connected. In addition, the control channel always uses the
heartbeat.

Currently, Sapera LT does not support the following GigEVsion 1.2 functionality: action command,
extended status code, primary application switchover, pending ack, and event data.

Acquisition
GigEVision defines certain mandatory features that are related to the acquisition. In the current
implementation these features are managed by the SapTransfer module and not presented to the user.
The SapTransfer::Grab and SapTransfer::Snap functions control the following features: "AcquisitionMode",
"AcquisitionFrameCount" and "AcquisitionStart". The SapTransfer::Freeze function controls the
"AcquisitionStop". The SapTransfer::Abort function controls the "AcquisitionAbort".

Currently, data can only be sent to one host. Note that some information from the data leader cannot be
retrieved by the user, such as Block Id, Width, Height, Offset X and Offset Y, Padding X and Padding Y. In
addition, buffers cannot receive images larger than the destination buffer size.

Streaming
Under Sapera LT, streaming is managed by a SapTransfer module. The concept is based on a pool of
buffers. The SapTransfer module fills a buffer with data coming from the device. When all data is received
for a buffer, the buffer is delivered through the use of a callback function.

Currently, Sapera LT does not support the following functionality described in the GigEVision 1.2
specification: unconditional streaming, multiple streams and non-streaming devices.

Cycling
When the first packet of a GigEVision block (leader) is received, it is assigned a buffer by the SapTransfer
module to receive the data block. The choice of buffer assigned to a new GigEVision block depends on the
cycling mode; the cycling mode is set using the SapXferPair::GetCycleMode, SapXferPair::SetCycleMode
function.

248 • Appendix A: Sapera LT and GenICam Sapera LT ++ Programmer's Manual

The supported cycling modes are:

• SapXferPair::CycleAsynchronous
• SapXferPair::CycleSynchronous
• SapXferPair::CycleWithTrash
• SapXferPair::CycleOff
• SapXferPair::CycleNextEmpty
• SapXferPair::CycleNextWithTrash.

Currently, the trash buffer must be a real buffer, and cannot be of type SapBuffer::TypeDummy.

In the event that some packets are lost and not recoverable, the state of the buffer is set as
SapBuffer::StateOverflow.

Transfer Callback
The SapTransfer module initiates callback functions based on events. The only supported event types for
GigEVision are: SapXferPair::EventEndOfFrame and SapXferPair::EventEndOfTransfer.

The SapXferPair::EventEndOfFrame event informs the user when all data of a GigEVision block is received.
At this point, the buffer is controlled by the user until its state is set to empty.

The SapXferPair::EventEndOfTransfer event might be sent at the same time as a
SapXferPair::EventEndOfFrame if the end of the frame also marks the end of a transfer. Currently, the
SapXferPair::EventEndOfTransfer event is only implemented when using SapTransfer::Snap since it is not
possible to know if a block is the last of a transfer when the block is received.

To know when a transfer is stopped the SapTransfer::Wait function should be used.

Time Stamp
As opposed to the traditional frame grabber, the timestamp is managed by the acquisition and not the
transfer. When a buffer is delivered, SapBuffer::GetCounterStamp function returns the 32 least significant
bits of the timestamp in the data leader. Control of the timestamp and information about the frequency
can be retrieved through features of the SapAcqDevice.
Therefore, the SapXferPair::GetCounterStampTimeBase, SapXferPair::SetCounterStampTimeBase and
SapXferPair::GetEventCountSource, SapXferPair::SetEventCountSource functions are not implemented.

Variable Frame Length
When acquiring images of variable length, the image buffer is allocated using the maximum expected
image height. To determine the actual number of lines in an image, use the SapBuffer::GetSpaceUsed
function to return how many lines were acquired in the last received buffer. This is necessary to avoid
processing lines in the buffer from previous acquisitions that were not overwritten by the current image
acquisition (to improve performance, buffers are overwritten but not flushed).

Payload Type
The Sapera LT only supports the Image payload type; File and Chunk payloads are not supported for the
moment.

The Extended Chunk payload is partially supported; it is possible to acquire the data in a buffer, but the
specific image and chunk portions of the buffer are not reported.

Pixel Format
The Sapera LT supports the following GigEVision pixel formats:

Mono8 BayerGR8 BayerRG8 BayerGB8

Sapera LT ++ Programmer's Manual Appendix A: Sapera LT and GenICam • 249

Mono8Signed BayerGR10 BayerRG10 BayerGB10
Mono10 BayerGR12 BayerRG12 BayerGB12
Mono12 BayerGR16 BayerRG16 BayerGB16
Mono14
Mono16

BayerBG8 BGR8Packed BayerBG8 YUV422Packed
BayerBG10 BGRA8Packed BayerBG10 YUV411Packed
BayerBG12 BGR12Packed BayerBG12 YUV422_YUYV_Packed
BayerBG16 BGR10Packed BayerBG16

250 • Appendix B: Obsolete Classes Sapera LT ++ Programmer's Manual

Appendix B: Obsolete Classes
The SapBayer andSapGraphics classes have been deprecated and are no longer officially supported.
However, the classes will continue to compile. The SapBayer class has been replaced by the
SapColorConversion class.
Refer to the Sapera LT ++ LT Legacy Classes Reference Manual for full descriptions of all obsolete classes.

Sapera LT ++ Programmer's Manual Contact Information • 251

Contact Information

Sales Information

Visit our web site: www.teledynedalsa.com/imaging
Email: mailto:info@teledynedalsa.com

Canadian Sales

Teledyne DALSA — Head office
605 McMurray Road
 Waterloo, Ontario, Canada, N2V 2E9
 Tel: 519 886 6000
 Fax: 519 886 8023

Teledyne DALSA — Montreal office
880 Rue McCaffrey
St. Laurent, Quebec, Canada, H4T 2C7
Tel: (514) 333-1301
Fax: (514) 333-1388

USA Sales European Sales

Teledyne DALSA — Billerica office
700 Technology Park Drive
Billerica, Ma. 01821
Tel: (978) 670-2000
Fax: (978) 670-2010

Teledyne DALSA GMBH
Felix-Wankel-Str. 1
82152 Krailling, Germany
Tel: +49 – 89 89 – 54 57 3-80
Fax: +49 – 89 89 – 54 57 3-46

Asian Sales

Teledyne DALSA Asia Pacific
Ikebukuro East 13F
3-4-3 Higashi Ikebukuro,
Toshima-ku, Tokyo, Japan
Tel: +81 3 5960 6353
Fax: +81 3 5960 6354

Shanghai Industrial Investment Building
Room G, 20F, 18 North Cao Xi Road,
Shanghai, China 200030
Tel: +86-21-64279081
Fax: +86-21-64699430

http://www.teledynedalsa.com/imaging
mailto:info@teledynedalsa.com

252 • Contact Information Sapera LT ++ Programmer's Manual

Technical Support
Submit any support question or request via our web site:

Technical support form via our web page:
Support requests for imaging product
installations,
Support requests for imaging applications

http://www.teledynedalsa.com/imaging/support
Camera support information

Product literature and driver updates

When encountering hardware or software problems, please have the following documents included in your
support request:
• The Sapera Log Viewer .txt file
• The PCI Diagnostic PciDiag.txt file
• The Device Manager BoardInfo.txt file

Note, the Sapera Log Viewer and PCI Diagnostic tools are available from the Windows
start menu shortcut Start•All Programs•Teledyne DALSA•Sapera LT•Tools.
The Device Manager utility is available as part of the driver installation for your Teledyne
DALSA device and is available from the Windows start menu shortcut Start•All
Programs•Teledyne DALSA•<Device Name>•Device Manager.

http://www.teledynedalsa.com/imaging/support

	Getting Started
	About Sapera LT ++
	Sapera LT Architecture
	Application Architecture
	What is a server?

	Library Architecture

	Requirements
	File Locations

	Hierarchy Charts
	Basic Class Hierarchy Chart

	Using Sapera LT ++
	Header Files, Libraries, and DLLs
	Sapera LT ++ - Creating an Application
	Visual Studio 2005/2008/2010/2012/2013
	Updating Existing Visual Studio Projects
	Borland C++ Builder XE1 to XE5
	Notes on Using the Sapera LT ++ API

	Demos and Examples

	Basic Class Reference
	Data Classes
	SapData Class
	SapDataFRGB Class
	SapDataHSI Class
	SapDataHSV Class
	SapDataFloat Class
	SapDataFPoint Class
	SapDataMono Class
	SapDataPoint Class
	SapDataRGB Class
	SapDataRGBA Class
	SapDataYUV Class

	SapAcquisition
	SapAcquisition Class Members
	SapAcquisition Member Functions
	SapAcquisition::SapAcquisition
	SapAcquisition::ApplyLut
	SapAcquisition::CanEnableLut
	SapAcquisition::Create
	SapAcquisition::CustomCommand
	SapAcquisition::Destroy
	SapAcquisition::EnableImageFilter
	SapAcquisition::EnableLut
	SapAcquisition::GetCallback
	SapAcquisition::GetCamSel, SapAcquisition::SetCamSel
	SapAcquisition::GetCapability
	SapAcquisition::GetConfigFile, SapAcquisition::SetConfigFile
	SapAcquisition::GetContext
	SapAcquisition::GetEventType, SapAcquisition::SetEventType
	SapAcquisition::GetFlipMode, SapAcquisition::SetFlipMode
	SapAcquisition::GetImageFilter, SapAcquisition::SetImageFilter
	SapAcquisition::GetImageFilterKernelSize
	SapAcquisition::GetLabel
	SapAcquisition::GetLut
	SapAcquisition::GetNumLut
	SapAcquisition::GetNumPlanarInputs
	SapAcquisition::GetParameter, SapAcquisition::SetParameter
	SapAcquisition::GetPlanarInputs, SapAcquisition::SetPlanarInputs
	SapAcquisition::GetSerialPortName
	SapAcquisition::GetSignalStatus
	SapAcquisition::GetTimeStampBase, SapAcquisition::SetTimeStampBase
	SapAcquisition::IsCapabilityValid
	SapAcquisition::IsColorConversionAvailable
	SapAcquisition::IsFlatFieldAvailable
	SapAcquisition::IsImageFilterAvailable
	SapAcquisition::IsImageFilterEnabled
	SapAcquisition::IsLutEnabled
	SapAcquisition::IsParameterValid
	SapAcquisition::IsSignalStatusAvailable
	SapAcquisition::IsTimeStampAvailable
	SapAcquisition::IsWhiteBalanceAvailable
	SapAcquisition::LoadImageFilter
	SapAcquisition::RegisterCallback
	SapAcquisition::ResetTimeStamp
	SapAcquisition::SaveImageFilter
	SapAcquisition::SaveParameters
	SapAcquisition::SetCallbackInfo
	SapAcquisition::SoftwareTrigger
	SapAcquisition::UnregisterCallback

	SapAcqCallbackInfo
	SapAcqCallbackInfo Class Members
	SapAcqCallBackInfo Member Functions
	SapAcqCallbackInfo::GetAcquisition
	SapAcqCallbackInfo::GetAuxiliaryTimestamp
	SapAcqCallbackInfo::SapAcqCallbackInfo
	SapAcqCallbackInfo::GetContext
	SapAcqCallbackInfo::GetCustomData
	SapAcqCallbackInfo::GetCustomSize
	SapAcqCallbackInfo::GetEventCount
	SapAcqCallbackInfo::GetEventInfo
	SapAcqCallbackInfo::GetEventType
	SapAcqCallbackInfo::GetGenericParam0 SapAcqCallbackInfo::GetGenericParam1 SapAcqCallbackInfo::GetGenericParam2 SapAcqCallbackInfo::GetGenericParam3
	SapAcqCallbackInfo::GetHostTimestamp
	SapAcqCallbackInfo::GetSignalStatus

	SapAcqDevice
	SapAcqDevice Class Members
	SapAcqDevice Member Functions
	SapAcqDevice::SapAcqDevice
	SapAcqDevice::Create
	SapAcqDevice::DeleteDeviceFile
	SapAcqDevice::Destroy
	SapAcqDevice::GetCapability
	SapAcqDevice::GetCategoryCount
	SapAcqDevice::GetCategoryPath
	SapAcqDevice::GetConfigFile, SapAcqDevice::SetConfigFile
	SapAcqDevice::GetConfigName, SapAcqDevice::SetConfigName
	SapAcqDevice::GetEventCount
	SapAcqDevice::GetEventIndexByName
	SapAcqDevice::GetEventNameByIndex
	SapAcqDevice::GetFeatureCount
	SapAcqDevice::GetFeatureIndexByName
	SapAcqDevice::GetFeatureInfo
	SapAcqDevice::GetFeatureNameByIndex
	SapAcqDevice::GetFeatureValue
	SapAcqDevice::GetFileCount
	SapAcqDevice::GetFileIndexByName
	SapAcqDevice::GetFileNameByIndex
	SapAcqDevice::GetFileProperty
	SapAcqDevice::GetLabel
	SapAcqDevice::GetModeName, SapAcqDevice::SetModeName
	SapAcqDevice::GetParameter, SapAcqDevice::SetParameter
	SapAcqDevice::GetReadOnly, SapAcqDevice::SetReadOnly
	SapAcqDevice::GetUpdateFeatureMode, SapAcqDevice::SetUpdateFeatureMode
	SapAcqDevice::IsCallbackRegistered
	SapAcqDevice::IsCapabilityValid
	SapAcqDevice::IsEventAvailable
	SapAcqDevice::IsFeatureAvailable
	SapAcqDevice::IsFileAccessAvailable
	SapAcqDevice::IsFlatFieldAvailable
	SapAcqDevice::IsParameterValid
	SapAcqDevice::IsRawBayerOutput
	SapAcqDevice::LoadFeatures
	SapAcqDevice::ReadFile
	SapAcqDevice::RegisterCallback
	SapAcqDevice::SaveFeatures
	SapAcqDevice::SetFeatureValue
	SapAcqDevice::UnregisterCallback
	SapAcqDevice::UpdateFeaturesFromDevice
	SapAcqDevice::UpdateFeaturesToDevice
	SapAcqDevice::UpdateLabel
	SapAcqDevice::WriteFile

	SapAcqDeviceCallbackInfo
	SapAcqDeviceCallbackInfo Class Members
	SapAcqDeviceCallbackInfo Member Functions
	SapAcqDeviceCallbackInfo::SapAcqDeviceCallbackInfo
	SapAcqDeviceCallbackInfo::GetAcqDevice
	SapAcqDeviceCallbackInfo::GetAuxiliaryTimeStamp
	SapAcqDeviceCallbackInfo::GetContext
	SapAcqDeviceCallbackInfo::GetCustomData
	SapAcqDeviceCallbackInfo::GetCustomSize
	SapAcqDeviceCallbackInfo::GetEventCount
	SapAcqDeviceCallbackInfo::GetEventIndex
	SapAcqDeviceCallbackInfo::GetEventInfo
	SapAcqDeviceCallbackInfo::GetFeatureIndex
	SapAcqDeviceCallbackInfo::GetGenericParam0 SapAcqDeviceCallbackInfo::GetGenericParam1 SapAcqDeviceCallbackInfo::GetGenericParam2 SapAcqDeviceCallbackInfo::GetGenericParam3
	SapAcqDeviceCallbackInfo::GetHostTimeStamp

	SapBuffer
	SapBuffer Class Members
	SapBuffer Member Functions
	SapBuffer::SapBuffer
	SapBuffer::Clear
	SapBuffer::ColorConvert
	SapBuffer::ColorWhiteBalance
	SapBuffer::Copy
	SapBuffer::CopyAll
	SapBuffer::CopyRect
	SapBuffer::Create
	SapBuffer::Destroy
	SapBuffer::GetAddress
	SapBuffer::GetBufName
	SapBuffer::GetBytesPerPixel
	SapBuffer::GetCapability
	SapBuffer::GetCount, SapBuffer::SetCount
	SapBuffer::GetCounterStamp
	SapBuffer::GetFormat, SapBuffer::SetFormat
	SapBuffer::GetFrameRate, SapBuffer::SetFrameRate
	SapBuffer::GetHandle, SapBuffer::operator[]
	SapBuffer::GetHandles
	SapBuffer::GetHeight, SapBuffer::SetHeight
	SapBuffer::GetHostCounterStamp
	SapBuffer::GetNumPages
	SapBuffer::GetIndex, SapBuffer::SetIndex
	SapBuffer::GetPage
	SapBuffer::GetPageFormat
	SapBuffer::GetParameter, SapBuffer::SetParameter
	SapBuffer::GetParameters, SapBuffer::SetParameters
	SapBuffer::GetPitch
	SapBuffer::GetPixelDepth, SapBuffer::SetPixelDepth
	SapBuffer::GetSpaceUsed
	SapBuffer::GetState
	SapBuffer::GetType, SapBuffer::SetType
	SapBuffer::GetWidth, SapBuffer::SetWidth
	SapBuffer::IsBufferTypeSupported
	SapBuffer::IsCapabilityValid
	SapBuffer::IsMapped
	SapBuffer::IsMultiFormat
	SapBuffer::IsParameterValid
	SapBuffer::Load
	SapBuffer::MergeComponents
	SapBuffer::Next
	SapBuffer::Read
	SapBuffer::ReadElement
	SapBuffer::ReadLine
	SapBuffer::ReadRect
	SapBuffer::ReleaseAddress
	SapBuffer::ResetIndex
	SapBuffer::Save
	SapBuffer::SetAllPage
	SapBuffer::SetAllState
	SapBuffer::SetPage
	SapBuffer::SetParametersFromFile
	SapBuffer::SetPhysicalAddress
	SapBuffer::SetState
	SapBuffer::SetVirtualAddress
	SapBuffer::SplitComponents
	SapBuffer::Write
	SapBuffer::WriteElement
	SapBuffer::WriteLine
	SapBuffer::WriteRect

	SapBufferRoi
	SapBufferRoi Class Members
	SapBufferRoi Member Functions
	SapBufferRoi::SapBufferRoi
	SapBufferRoi::Create
	SapBufferRoi::Destroy
	SapBufferRoi::GetHeight, SapBufferRoi::SetHeight
	SapBufferRoi::GetParent, SapBuffer::SetParent
	SapBufferRoi::GetRoot
	SapBufferRoi::GetTrash
	SapBufferRoi::GetWidth, SapBufferRoi::SetWidth
	SapBufferRoi::GetXMin, SapBufferRoi::SetXMin
	SapBufferRoi::GetYMin, SapBufferRoi::SetYMin
	SapBufferRoi::ResetRoi
	SapBufferRoi::SetRoi

	SapBufferWithTrash
	SapBufferWithTrash Class Members
	SapBufferWithTrash Member Functions
	SapBufferWithTrash::SapBufferWithTrash
	SapBufferWithTrash::Create
	SapBufferWithTrash::Destroy
	SapBufferWithTrash::GetTrash
	SapBufferWithTrash::GetTrashType, SapBufferWithTrash::SetTrashType

	SapColorConversion
	SapColorConversion Class Members
	SapColorConversion Member Functions
	SapColorConversion::SapColorConversion
	SapColorConversion::Convert
	SapColorConversion::Create
	SapColorConversion::Destroy
	SapColorConversion::Enable
	SapColorConversion::EnableLut
	SapColorConversion::GetAcquisition, SapColorConversion::SetAcquisition
	SapColorConversion::GetAlign, SapColorConversion::SetAlign
	SapColorConversion::GetAvailAlign
	SapColorConversion::GetAvailMethod
	SapColorConversion::GetGamma, SapColorConversion::SetGamma
	SapColorConversion::GetInputBuffer, SapColorConversion::SetInputBuffer
	SapColorConversion::GetLut
	SapColorConversion::GetMethod, SapColorConversion::SetMethod
	SapColorConversion::GetOutputBuffer
	SapColorConversion::GetOutputBufferCount, SapColorConversion::SetOutputBufferCount
	SapColorConversion::GetOutputFormat, SapColorConversion::SetOutputFormat
	SapColorConversion::GetWBGain, SapColorConversion::SetWBGain
	SapColorConversion::GetWBOffset, SapColorConversion::SetWBOffset
	SapColorConversion::IsAcqLut
	SapColorConversion::IsEnabled
	SapColorConversion::IsHardwareEnabled
	SapColorConversion::IsHardwareSupported
	SapColorConversion::IsLutEnabled
	SapColorConversion::IsSoftwareEnabled
	SapColorConversion::IsSoftwareSupported
	SapColorConversion::WhiteBalance
	SapColorConversion::WhiteBalanceManual

	SapDisplay
	SapDisplay Class Members
	SapDisplay Member Functions
	SapDisplay::SapDisplay
	SapDisplay::Create
	SapDisplay::Destroy
	SapDisplay::GetCapability
	SapDisplay::GetDC
	SapDisplay::GetFormatDetection, SapDisplay::SetFormatDetection
	SapDisplay::GetHandle
	SapDisplay::GetHeight
	SapDisplay::GetLocation, SapDisplay::SetLocation
	SapDisplay::GetParameter, SapDisplay::SetParameter
	SapDisplay::GetPixelDepth
	SapDisplay::GetRefreshRate
	SapDisplay::GetType
	SapDisplay::GetWidth
	SapDisplay::IsCapabilityValid
	SapDisplay::IsInterlaced
	SapDisplay::IsOffscreenAvailable
	SapDisplay::IsOverlayAvailable
	SapDisplay::IsPrimaryVGABoard
	SapDisplay::IsParameterValid
	SapDisplay::ReleaseDC

	SapFeature
	SapFeature Class Members
	SapFeature Member Functions
	SapFeature::SapFeature
	SapFeature::Create
	SapFeature::Destroy
	SapFeature::GetAccessMode
	SapFeature::GetArrayLength
	SapFeature::GetCategory
	SapFeature::GetDescription
	SapFeature::GetDisplayName
	SapFeature::GetEnumCount
	SapFeature::GetEnumString
	SapFeature::GetEnumStringFromValue
	SapFeature::GetEnumValue
	SapFeature::GetEnumValueFromString
	SapFeature::GetFloatNotation
	SapFeature::GetFloatPrecision
	SapFeature::GetHandle
	SapFeature::GetInc
	SapFeature::GetIncrementType
	SapFeature::GetLocation, SapFeature::SetLocation
	SapFeature::GetMax
	SapFeature::GetMin
	SapFeature::GetName
	SapFeature::GetPollingTime
	SapFeature::GetRepresentation
	SapFeature::GetSelectedFeatureCount
	SapFeature::GetSelectedFeatureIndex
	SapFeature::GetSelectedFeatureName
	SapFeature::GetSelectingFeatureCount
	SapFeature::GetSelectingFeatureIndex
	SapFeature::GetSelectingFeatureName
	SapFeature::GetSign
	SapFeature::GetSiToNativeExp10
	SapFeature::GetSiUnit
	SapFeature::GetToolTip
	SapFeature::GetType
	SapFeature::GetValidValue
	SapFeature::GetValidValueCount
	SapFeature::GetVisibility
	SapFeature::GetWriteMode
	SapFeature::IsEnumEnabled
	SapFeature::IsSavedToConfigFile, SapFeature::SetSavedToConfigFile
	SapFeature::IsSelector
	SapFeature::IsStandard

	SapFlatField
	SapFlatField Class Members
	SapFlatField Member Functions
	SapFlatField::SapFlatField
	SapFlatField::Clear
	SapFlatField::ComputeGain
	SapFlatField::ComputeOffset
	SapFlatField::Create
	SapFlatField::Destroy
	SapFlatField::Enable
	SapFlatField::EnableClippedGainOffsetDefects
	SapFlatField::EnablePixelReplacement
	SapFlatField::Execute
	SapFlatField::GetAcquisition, SapFlatField::SetAcquisition
	SapFlatField::GetAcqDevice, SapFlatField::SetAcqDevice
	SapFlatField::GetAverage
	SapFlatField::GetBlackPixelPercentage, SapFlatField::SetBlackPixelPercentage
	SapFlatField::GetBuffer, SapFlatField::SetBuffer
	SapFlatField::GetBufferOffset, SapFlatField::GetBufferGain
	SapFlatField::GetCorrectionType, SapFlatField::SetCorrectionType
	SapFlatField::GetDeviationMaxBlack, SapFlatField::SetDeviationMaxBlack
	SapFlatField::GetDeviationMaxWhite, SapFlatField::SetDeviationMaxWhite
	SapFlatField::GetGainBase, SapFlatField::SetGainBase
	SapFlatField::GetGainDivisor, SapFlatField::SetGainDivisor
	SapFlatField::GetGainMinMax, SapFlatField::SetGainMinMax
	SapFlatField::GetNumFramesAverage, SapFlatField::SetNumFramesAverage
	SapFlatField::GetNumLinesAverage, SapFlatField::SetNumLinesAverage
	SapFlatField::GetOffsetFactor , SapFlatField::SetOffsetFactor
	SapFlatField::GetOffsetMinMax , SapFlatField::SetOffsetMinMax
	SapFlatField::GetStats
	SapFlatField::GetVerticalOffset, SapFlatField::SetVerticalOffset
	SapFlatField::GetVideoType, SapFlatField::SetVideoType
	SapFlatField::IsClippedGainOffsetDefects
	SapFlatField::IsEnabled
	SapFlatField::IsPixelReplacement
	SapFlatField::IsSoftware
	SapFlatField::Load
	SapFlatField::ReadGainOffsetFromDevice
	SapFlatField::ResetRegionOfInterest
	SapFlatField::Save
	SapFlatField::SetRegionOfInterest

	SapGio
	SapGio Class Members
	SapGio Member Functions
	SapGio::SapGio
	SapGio::AutoTrigger
	SapGio::Create
	SapGio::Destroy
	SapGio::DisableCallback
	SapGio::EnableCallback
	SapGio::GetAvailPinConfig
	SapGio::GetCallback
	SapGio::GetCapability
	SapGio::GetContext
	SapGio::GetHandle
	SapGio::GetLocation,SapGio::SetLocation
	SapGio::GetNumPins
	SapGio::GetParameter, SapGio::SetParameter
	SapGio::GetPinConfig, SapGio::SetPinConfig
	SapGio::GetPinState, SapGio::SetPinState
	SapGio::IsCapabilityValid
	SapGio::IsParameterValid
	SapGio::SetCallbackInfo

	SapGioCallbackInfo
	SapGioCallbackInfo Class Members
	SapGioCallbackInfo Member Functions
	SapGioCallbackInfo::SapGioCallbackInfo
	SapGioCallbackInfo::GetAuxiliaryTimestamp
	SapGioCallbackInfo::GetContext
	SapGioCallbackInfo::GetCustomData
	SapGioCallbackInfo::GetCustomSize
	SapGioCallbackInfo::GetEventCount
	SapGioCallbackInfo::GetEventInfo
	SapGioCallbackInfo::GetEventType
	SapGioCallbackInfo::GetGio
	SapGioCallbackInfo::GetGenericParam0 SapGioCallbackInfo::GetGenericParam1 SapGioCallbackInfo::GetGenericParam2 SapGioCallbackInfo::GetGenericParam3
	SapGioCallbackInfo::GetHostTimestamp
	SapGioCallbackInfo::GetPinNumber

	SapLocation
	SapLocation Class Members
	SapLocation Member Functions
	SapLocation::SapLocation
	SapLocation::GetResourceIndex
	SapLocation::GetServerIndex
	SapLocation::GetServerName
	SapLocation::IsUnknown

	SapLut
	SapLut Class Members
	SapLut Member Functions
	SapLut::SapLut
	SapLut::Arithmetic
	SapLut::BinaryPattern
	SapLut::Boolean
	SapLut::Copy
	SapLut::Create
	SapLut::Destroy
	SapLut::Gamma
	SapLut::GetElementSize
	SapLut::GetFormat, SapLut::SetFormat
	SapLut::GetHandle
	SapLut::GetLocation, SapLut::SetLocation
	SapLut::GetNumEntries, SapLut::SetNumEntries
	SapLut::GetNumPages
	SapLut::GetParameter, SapLut::SetParameter
	SapLut::GetTotalSize
	SapLut::IsSigned
	SapLut::Load
	SapLut::Normal
	SapLut::Read
	SapLut::Reverse
	SapLut::Roll
	SapLut::Save
	SapLut::Shift
	SapLut::Slope
	SapLut::Threshold
	SapLut::Write

	SapManager
	SapManager Class Members
	SapManager Member Functions
	SapManager::operator BOOL
	SapManager::Close
	SapManager::DetectAllServers
	SapManager::DisplayMessage
	SapManager::GetCommandTimeout, SapManager::SetCommandTimeout
	SapManager::GetDisplayStatusMode, SapManager::SetDisplayStatusMode
	SapManager::GetFormatType
	SapManager::GetInstallDirectory
	SapManager::GetLastStatus
	SapManager::GetPixelDepthMin, SapManager::GetPixelDepthMax
	SapManager.GetPixelDepthMin, SapManager.GetPixelDepthMax Method
	SapManager::GetResetTimeout, SapManager::SetResetTimeout
	SapManager::GetResourceCount
	SapManager::GetResourceIndex
	SapManager::GetResourceName
	SapManager::GetServerCount
	SapManager::GetServerEventType
	SapManager::GetServerHandle
	SapManager::GetServerIndex
	SapManager::GetServerName
	SapManager::GetServerSerialNumber
	SapManager::GetServerType
	SapManager::GetStringFromFormat
	SapManager::GetVersionInfo
	SapManager::IsResourceAvailable
	SapManager::IsSameLocation Method
	SapManager::IsSameServer
	SapManager::IsServerAccessible
	SapManager::IsSystemLocation
	SapManager::IsStatusOk
	SapManager::Open
	SapManager::RegisterServerCallback
	SapManager::ResetServer
	SapManager::UnregisterServerCallback
	SapManager::WriteFile

	SapManCallbackInfo
	SapManCallbackInfo Class Members
	SapManCallbackInfo Member Functions
	SapManCallbackInfo::SapManCallbackInfo
	SapManCallbackInfo::GetContext
	SapManCallbackInfo::GetErrorMessage
	SapManCallbackInfo::GetErrorValue
	SapManCallbackInfo::GetEventType
	SapManCallbackInfo::GetFilePercentProgress
	SapManCallbackInfo::GetResourceIndex
	SapManCallbackInfo::GetServerIndex

	SapMetadata
	SapMetadata Class Members
	SapMetadata Member Functions
	SapMetadata::SapMetadata
	SapMetadata::Create
	SapMetadata::Destroy
	SapMetadata::Enable
	SapMetadata::Extract
	SapMetadata::GetExtractedResult
	SapMetadata::GetExtractedResultCount
	SapMetadata::GetSelectorCount
	SapMetadata::GetSelectorName
	SapMetadata::GetMetadataType
	SapMetadata::IsEnabled
	SapMetadata::IsMetadataSupported
	SapMetadata::IsSelected
	SapMetadata::SaveToCSV
	SapMetadata::Select

	SapPerformance
	SapPerformance Class Members
	SapPerformace Member Functions
	SapPerformance::SapPerformance
	SapPerformance::GetTime
	SapPerformance::GetTimeMicro
	SapPerformance::GetTimeMilli
	SapPerformance::Reset

	SapProcessing
	SapProcessing Class Members
	SapProcessing Member Functions
	SapProcessing::SapProcessing
	SapProcessing::Create
	SapProcessing::Destroy
	SapProcessing::Execute
	SapProcessing::ExecuteNext
	SapProcessing::GetBuffer, SapProcessing::SetBuffer
	SapProcessing::GetCallback
	SapProcessing::GetContext
	SapProcessing::GetIndex
	SapProcessing::GetThreadPriority, SapProcessing::SetThreadPriority
	SapProcessing::GetTime
	SapProcessing::Init
	SapProcessing::IsAutoEmpty, SapProcessing::SetAutoEmpty
	SapProcessing::Run
	SapProcessing::SetCallbackInfo

	SapProCallbackInfo
	SapProCallbackInfo Class Members
	SapProCallbackInfo Member Functions
	SapProCallbackInfo::SapProCallbackInfo
	SapProCallbackInfo::GetContext
	SapProCallbackInfo::GetProcessing

	SapTransfer
	SapTransfer Class Members
	SapTransfer Member Functions
	SapTransfer::SapTransfer
	SapTransfer::Abort
	SapTransfer::AddPair
	SapTransfer::Connect
	SapTransfer::Create
	SapTransfer::Destroy
	SapTransfer::Disconnect
	SapTransfer::Freeze
	SapTransfer::GetCallback
	SapTransfer::GetCapability
	SapTransfer::GetConnectTimeout, SapTransfer::SetConnectTimeout
	SapTransfer::GetContext
	SapTransfer::GetCounterStampInfo
	SapTransfer::GetHandle
	SapTransfer::GetLocation, SapTransfer::SetLocation
	SapTransfer::GetNumPairs
	SapTransfer::GetPair
	SapTransfer::GetParameter, SapTransfer::SetParameter
	SapTransfer::GetStartMode, SapTransfer::SetStartMode
	SapTransfer::GetTrashCallback
	SapTransfer::Grab
	SapTransfer::Init
	SapTransfer::IsAutoConnect, SapTransfer::SetAutoConnect
	SapTransfer::IsAutoEmpty, SapTransfer::SetAutoEmpty
	SapTransfer::IsCapabilityValid
	SapTransfer::IsConnected
	SapTransfer::IsCycleModeAvailable
	SapTransfer::IsGrabbing
	SapTransfer::IsParameterValid
	SapTransfer::RegisterCallback
	SapTransfer::RemoveAllPairs
	SapTransfer::Select
	SapTransfer::SetCallbackInfo
	SapTransfer::SetTrashCallbackInfo
	SapTransfer::Snap
	SapTransfer::UnregisterCallback
	SapTransfer::Wait

	Specialized Transfer Classes
	Common Constructor Arguments
	SapAcqToBuf Class
	SapAcqDeviceToBuf Class
	SapMultiAcqToBuf Class

	SapView
	SapView Class Members
	SapView Member Functions
	SapView::SapView
	SapView::ApplyLut
	SapView::Create
	SapView::Destroy
	SapView::GetBuffer, SapView::SetBuffer
	SapView::GetCallback
	SapView::GetCapability
	SapView::GetContext
	SapView::GetDC
	SapView::GetDisplay, SapView::SetDisplay
	SapView::GetHandle
	SapView::GetHeight
	SapView::GetImmediateMode, SapView::SetImmediateMode
	SapView::GetIndex
	SapView::GetKeyColor, SapView::SetKeyColor
	SapView::GetLut
	SapView::GetOverlayMode, SapView::SetOverlayMode
	SapView::GetParameter, SapView::SetParameter
	SapView::GetRange, SapView::SetRange
	SapView::GetRangeMinMax
	SapView::GetScalingMode, SapView::SetScalingMode
	SapView::GetScrollPos
	SapView::GetScrollRange
	SapView::GetThreadPriority, SapView::SetThreadPriority
	SapView::GetViewArea
	SapView::GetWidth
	SapView::GetWindow, SapView::SetWindow
	SapView::GetWindowTitle, SapView::SetWindowTitle
	SapView::HasRange
	SapView::Hide
	SapView::Init
	SapView::IsAutoEmpty, SapView::SetAutoEmpty
	SapView::IsCapabilityValid
	SapView::IsParameterValid
	SapView::OnHScroll
	SapView::OnMove
	SapView::OnPaint
	SapView::OnSize
	SapView::OnVScroll
	SapView::ReleaseDC
	SapView::SetCallbackInfo
	SapView::Show
	SapView::ShowNext

	SapViewCallbackInfo
	SapViewCallbackInfo Class Members
	SapViewCallbackInfo Member Functions
	SapViewCallbackInfo::SapViewCallbackInfo
	SapViewCallbackInfo::GetContext
	SapViewCallbackInfo::GetView

	SapXferCallbackInfo
	SapXferCallbackInfo Class Members
	SapXferCallbackInfo Member Functions
	SapXferCallbackInfo::SapXferCallbackInfo
	SapXferCallbackInfo::GetAuxiliaryTimestamp
	SapXferCallbackInfo::GetContext
	SapXferCallbackInfo::GetCustomData
	SapXferCallbackInfo::GetCustomSize
	SapXferCallbackInfo::GetEventCount
	SapXferCallbackInfo::GetEventInfo
	SapXferCallbackInfo::GetEventType
	SapXferCallbackInfo::GetGenericParam0 SapXferCallbackInfo::GetGenericParam1 SapXferCallbackInfo::GetGenericParam2 SapXferCallbackInfo::GetGenericParam3
	SapXferCallbackInfo::GetHostTimestamp
	SapXferCallbackInfo::GetPairIndex
	SapXferCallbackInfo::GetTransfer
	SapXferCallbackInfo::IsTrash

	SapXferNode
	SapXferNode Class Members
	SapXferNode Member Properties
	SapXferNode::SapXferNode
	SapXferNode::GetHandle
	SapXferNode::GetLocation, SapXferNode::SetLocation
	SapXferNode::GetServer
	SapXferNode::GetSrcNode, SapXferNode::SetSrcNode
	SapXferNode::GetSrcPort
	SapXferNode::GetXferNodeType
	SapXferNode::GetXferParams, SapXferNode::SetXferParams

	SapXferPair
	SapXferPair Class Members
	SapXferPair Member Functions
	SapXferPair::SapXferPair
	SapXferPair::GetCallback, SapXferPair::GetTrashCallback
	SapXferPair::GetContext, SapXferPair::GetTrashContext
	SapXferPair::GetCounterStampTimeBase, SapXferPair::SetCounterStampTimeBase
	SapXferPair::GetCycleMode, SapXferPair::SetCycleMode
	SapXferPair::GetDst
	SapXferPair::GetDstPort
	SapXferPair::GetEventCountSource, SapXferPair::SetEventCountSource
	SapXferPair::GetEventType, SapXferPair::SetEventType
	SapXferPair::GetFlipMode, SapXferPair::SetFlipMode
	SapXferPair::GetFramesOnBoard, SapXferPair::SetFramesOnBoard
	SapXferPair::GetFramesPerCallback, SapXferPair::SetFramesPerCallback
	SapXferPair::GetSrc
	SapXferPair::GetSrcIndex
	SapXferPair::GetSrcPort
	SapXferPair::IsRegCallback
	SapXferPair::SetCallbackInfo, SapXferPair::SetTrashCallbackInfo

	SapXferParams
	SapXferParams Class Members
	SapXferParams Member Functions
	SapXferParams::SapXferParams
	SapXferParams::GetFieldOrder, SapXferParams::SetFieldOrder
	SapXferParams::GetFormat, SapXferParams::SetFormat
	SapXferParams::GetFrameType, SapXferParams::SetFrameType
	SapXferParams::GetHeight, SapXferParams::SetHeight
	SapXferParams::GetParameters, SapXferParams::SetParameters
	SapXferParams::GetPixelDepth, SapXferParams::SetPixelDepth
	SapXferParams::GetPixelShift, SapXferParams::SetPixelShift
	SapXferParams::GetWidth, SapXferParams::SetWidth

	Appendix A: Sapera LT and GenICam
	What is GenICam?
	Using Sapera LT with GenICam-compliant Devices
	Features
	Selectors

	File Transfer

	Notes on the Sapera LT GenICam Implementation
	Events
	Type

	GigEVision in Sapera LT
	Channels
	Acquisition
	Streaming
	Cycling
	Transfer Callback
	Time Stamp
	Variable Frame Length
	Payload Type
	Pixel Format

	Appendix B: Obsolete Classes
	Contact Information
	Sales Information
	Technical Support

